نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه اقتصاد، واحد زنجان، دانشگاه آزاد اسلامی، زنجان، ایران.

چکیده

هدف اصلی تحقیق بررسی تأثیر عوامل مختلف بر میزان شدت انرژی با تأکید بر پیچیدگی اقتصادی و ارتباط متقابل ریسک مالی و توسعه مالی می‌باشد. داده‌های آماری بکار گرفته‌شده در این تحقیق از بانک اطلاعاتی راهنمای بین‌المللی ریسک کشوری، بانک جهانی، ترازنامه انرژی وب‌سایت دانشگاه ام‌آی‌تی طی سال‌های 2022-2000 می‌باشد. به‌منظور برآورد الگوی موردنظر، از رهیافت خود توزیع با وقفه‌های گسترده در چارچوب الگوی پویای کوتاه‌مدت، روابط بلندمدت و الگوی تصحیح خطا استفاده شده است. الگوی (0,0,0,0,0,0,0,0,0,0,1) ARDL با وقفه یک برای متغیر شدت انرژی و وقفه صفر برای کلیه متغیرهای مستقل بر اساس معیار شوارتز-بیزین انتخاب گردید. نتایج الگوی پویای خود توزیع با وقفه‌های گسترده در کوتاه‌مدت و بلندمدت نشان می‌دهد: اثرگذاری قیمت انرژی و سرمایه سرانه بر شدت انرژی غیرمستقیم می‌باشد. تأثیر متغیرهای پیچیدگی اقتصادی، آزادسازی تجاری، نرخ شهرنشینی و کاربران اینترنت بر شدت انرژی در کوتاه‌مدت و بلندمدت مستقیم است. ضرایب سرمایه‌گذاری داخلی و نیروی کار با وجود معنی‌داری آماری، مقدار آن بسیار کوچک و نزدیک به صفر است. اثرات متقابل ریسک مالی و توسعه مالی و همچنین متغیر سرمایه‌گذاری مستقیم خارجی تأثیر معنی‌داری بر شدت انرژی در هر دو بازه زمانی ایجاد ننموده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Factors Affecting Energy Intensity with Emphasis on Economic Complexity and Mutual Relationship of Financial Risk and Financial Development

نویسنده [English]

  • Ashkan Rahimzadeh

Assistant Professor, Economics Department, Zanjan Branch, Islamic Azad University, Zanjan, Iran

چکیده [English]

The main goal of the research is to investigate the impact of various factors on energy intensity with an emphasis on economic complexity and mutual relationship between financial risk and financial development. The statistical data used in this research are from the International Country Risk Guide (ICRG), World Bank, energy balance and MIT University website during the years 2000-2022. In order to estimate the target model, the Auto Regressive distributed Lags approach (ARDL approach) has been used in the framework of short-term dynamic model, long-term relationships and error correction model. ARDL model (1,0,0,0,0,0,0,0,0,0,0) was selected with one interval for energy intensity variable and zero interval for all independent variables based on Schwartz-Bayesian criterion. The results of the ARDL dynamic model in the short-term and long-term show: the effect of energy price and capital per capita on energy intensity is indirect. The effect of variables of economic complexity, trade liberalization, urbanization rate and internet users on energy intensity in the short and long term is direct. Despite its statistical significance, the coefficients of domestic investment and labor force are very small and close to zero. The mutual effects of financial risk and financial development, as well as the foreign direct investment variable, did not have a significant effect on energy intensity in both time periods.
Introduction
In line with the special importance given to environmental issues, rationalizing energy consumption is becoming more and more necessary. The continuity of the supply of finite energies, such as oil, is facing serious doubts, and the revelation of the realities of energy supply is creating anxiety and anomalies in countries.  Reducing energy intensity, or in other words, optimizing energy consumption, is considered one of the development goals and aspirations of policymakers and economic planners in every country, and achieving this goal is not possible except by recognizing its determining factors and providing thoughtful solutions. Energy price The main factor in choosing between energy-efficient technology or environmental technology is the price of energy. Economic complexity can affect energy intensity through scale, composition, and technical effects, which manifest themselves over different time periods. There are various channels proposed regarding the impact of financial risk on energy intensity. Some channels imply a decrease in energy intensity and others imply an increase in energy intensity. These three effects may also appear in the case of foreign direct investment and Trade liberalization. Information and communication technology affects energy intensity through substitution and income effects. Investment may have different effects on energy intensity depending on the structure of the economy. Urbanization can be examined from different perspectives, such as economies of scale and the expansion of economic activities.
Methods and Materials
The analysis used in this research is the ARDL method, which uses three dynamic equations: short-term, long-term, and error correction. The model variables are logarithmic. The dependent variable is energy intensity and the independent variables are energy price, economic complexity, the interrelationship of financial risk and financial development, trade liberalization, urbanization rate, Internet users, capital per capita, foreign direct investment, domestic investment, and labor force. Statistics on energy intensity, domestic investment, foreign direct investment, labor, capital per capita, trade liberalization (trade as a percentage of GDP), and urbanization rate were obtained from the World Bank. Information on bank facilities to the non-governmental sector (Financial Development Index) was obtained from the Central Bank, information on economic complexity was obtained from the MIT website, and financial risk information was obtained from the International Country Risk Guide database. Regarding energy prices in Iran, the main energy carriers include petroleum products, natural gas, and electricity. In this study, the energy price index is obtained as a weighted average (based on the share of carriers) of the three price indices of petroleum products, natural gas, and electricity. Each of these sub-indices is calculated using the Laspeyres method. The period under study is 2000-2022. EViews 9 software was also used in the estimation.
Results and Discussion
The results of the ARDL model estimation show that: The impact of energy prices on energy intensity in the short and long term is indirect. Such a result is consistent with the theoretical foundations that increasing energy prices provides an incentive to increase energy efficiency. As economic complexity increases, energy intensity increases in both the short and long term. Therefore, it can be said that the country is not yet at the stage of strong emergence of technical or combination effects, or their magnitude is lower compared to the scale effect. The long-term positive coefficient (0.53) is slightly lower than the short-term (0.775). The urbanization rate has a direct impact on energy intensity in the short and long term. This result indicates that with the expansion of urbanization, on the one hand, urban density in the country has not been able to reduce energy intensity for public urban infrastructure through economies of scale, and on the other hand, with the expansion of economic activities, energy intensity has increased. The value of the long-term positive coefficient (0.563) is lower compared to the short-term (0.82). An increase in capital per capita has a negative impact on energy intensity in the short and long term. Labor, despite its negative impact, has a very small impact in both time periods. That is, a higher share of capital is associated with energy-intensive technologies, and a lower share of capital is associated with technologies with a higher share of energy input. Internet users have a positive impact on energy intensity in the short and long term, indicating that the income effect is dominant over the substitution effect. Foreign direct investment did not have a significant impact on energy intensity in both time periods, which indicates that economic growth is not affected by foreign direct investment. The interaction effects of financial risk and financial development on energy intensity did not have a significant impact in either time period, and it can be said that financial development in the country has not yet reached a level that can significantly increase investment and economic growth.
Conclusion
The energy price variable coefficient implies that each 1% increase in energy prices reduces energy intensity by 0.018 and 0.013% in the short and long run, respectively. The economic complexity coefficient implies that each 1% increase in this variable increases energy intensity by 0.775 and 0.53% in the short and long term, respectively. Trade liberalization has a positive and significant effect on energy intensity, such that each one percent increase in this variable increases energy intensity by 0.038 and 0.026 percent in the short and long term, respectively. The urbanization rate has a positive effect on energy intensity, such that each one percent increase in this variable increases energy intensity by 0.82 and 0.563 percent in the short and long term, respectively. The coefficient of Internet users implies that a one percent increase in Internet users increases energy intensity by 0.023 and 0.016 percent in the short and long run, respectively. The coefficient of domestic investment and labor, despite being statistically significant, is very small and close to zero. The variables of foreign direct investment and the interaction effects of financial risk and financial development did not have a significant effect on energy intensity.

کلیدواژه‌ها [English]

  • Energy Intensity
  • Economic Complexity
  • Mutual Relationship of Financial Risk and Financial Development
  • Trade Liberalization
  • Internet Users
ابراهیمی محسن، ممی پور سیاب، بنی مشهدی میلاد. (1398). بررسی عوامل مؤثر بر شدت انرژی با تأکید بر اثر شکست ساختاری در ایران. پژوهش‌های اقتصادی (رشد و توسعه پایدار)، ۱۹ (۲): ۸۷-۱۰۸. http://ecor.modares.ac.ir/article-18-15313-fa.html
درگاهی، حسن و بیابانی خامنه، کاظم. (1395). نقش عوامل قیمتی، درآمدی و کارایی در شدت انرژی ایران. فصلنامه تحقیقات اقتصادی، 51(2): 355-384. doi: 10.22059/jte.2016.58457
سرزعیم، علی. (۱۳۹۷). بینش اقتصادی برای همه. انتشارات ترمه، چاپ چهارم.
سیف، اله‌مراد و حمیدی رزی، داود. (1395). بررسی تأثیر شاخص‌های منتخب اقتصاد دانش‌بنیان بر شدت انرژی استان‌های کشور. پژوهشنامه اقتصاد انرژی ایران، 5(18): 101-145. doi: 10.22054/jiee.2016.7194
عارفیان، محمدرضا، فرجی دیزجی، سجاد و قاسمی، سحر. (1399). بررسی نقش انرژی تجدید‌پذیر، انرژی تجدید‌ناپذیر و رشد اقتصادی بر انتشار کربن در کشورهای OECD. اقتصاد و تجارت نوین، 15(3 (48)): 109-137. doi: 10.30465/jnet.2020.6298
عزیزی زهرا. (1398). بررسی نحوه اثرگذاری پیچیدگی اقتصادی بر مصرف انرژی در بخش صنعت. فصلنامه پژوهشنامه اقتصاد و برنامه ریزی، ۲۴ (۱): ۲۴-۳. doi:10.29252/jpbud.24.1.3
عزیزی، زهرا، فریدزاد، علی و خورسندی، مرتضی. (1394). نقش قیمت در اثرگذاری غیرخطی عوامل مؤثر بر شدت انرژی در ایران. پژوهشنامه اقتصاد انرژی ایران، 5(17): 67-98. doi: 10.22054/jiee.2017.7166
فتحی زاده، حسین و نونژاد، مسعود و حقیقت، علی و امینی فرد، عباس. (1400). رابطه رشد اقتصادی، شدت انرژی و توسعه مالی: یک مقایسه از اقتصادهای ایران و ترکیه. اقتصاد کاربردی، 31: 42-19.
فلاحی، اسماعیل و خلیلیان، صادق. (1388). مقایسه اهمیت فرآورده های نفتی و برق با سایر عوامل تولید در بخش کشاورزی ایران. تحقیقات اقتصاد کشاورزی، 1(2): 19-1. SID. https://sid.ir/paper/158612/fa
قاسمی، عبدالرسول و محمدخان پور اردبیل، رقیه. (1393). بررسی تأثیر فناوری اطلاعات وارتباطات بر شدت مصرف انرژی در بخش حمل ونقل. پژوهشنامه اقتصاد انرژی ایران، 4(13): 169-190.
گلی، یونس، محنت‌فر، یوسف. (1399). بررسی اثر صنعتی‌شدن و شهرنشینی بر کارایی انرژی در استان‌های ایران (رهیافت اقتصادسنجی فضایی). مجله سیاست اقتصادی، 12(23): 188-167. https://doi.org/10.22034/epj.2020.11361.1919
معبودی، رضا و دره نظری، زینب. (1401). تاثیر مالی سازی بر آلودگی محیط زیست در ایران. اقتصاد و تجارت نوین، 17(2): 179-153.
مؤتمنی، مانی و زبیری، هدی. (1401). تحلیل رابطه فناوری اجتماعی و پیچیدگی اقتصادی با استفاده از الگوی PVAR. پژوهش‌های اقتصادی ایران، 27(91): 223-255. doi: 10.22054/ijer.2022.61995.1010
موسویان، سید مهدی، کریمی تکانلو، زهرا، صادقی، سید کمال و پورعبادالهان کویچ، محسن. (1397). بررسی اثر مخارج دولت و سرمایه‌گذاری مستقیم خارجی بر شدت انرژی در صنایع کارخانه‌ای استان‌های ایران: رویکرد اقتصادسنجی فضایی. پژوهشنامه اقتصاد انرژی ایران، 7(28): 157-184. doi: 10.22054/jiee.2019.9842
نوفرستی، محمد. (1391). ریشه واحد و همجمعی در اقتصادسنجی. موسسه خدمات فرهنگی رسا.
References
Abid, M., (2015). The close relationship between informal economic growth and carbon emissions in Tunisia since 1980: the (ir) relevance of structural breaks. Sustainable Cities and Society, 15, 11e21.
Adom, P. K. (2015b). Business Cycle and Economic-Wide Energy Intensity: The Implications for Energy Conservation Policy in Algeria. Energy, Vol. 88, pp. 334-350.
Antonietti, R., & Fontini, F. (2019). Does energy price afect energy efciency? Cross-country panel evidence. Energy Policy, 129, 896–906. https://doi.org/10.1016/j.enpol.2019. 02.069
Arefian, Mohammadreza., Faraji Dizaji, Sajjad., and Ghasemi, Sahar. (2020). Examining the Role of Renewable Energy, Non-Renewable Energy, and Economic Growth on Carbon Emissions in OECD Countries. Journal of New Economy and Trade, 15(3), 109-137. [In Persian]
Azizi, Zahra. (2019). Investigating the Impact of Economic Complexity on Energy Consumption in the Industrial Sector. Journal of Planning and Budgeting, 144, 3-24. [In Persian]
Azizi, Zahra., Faridzad, Ali., Khorsandi, Morteza. (2015). The Role of Prices in the Nonlinear Effects of Factors Influencing Energy Intensity in Iran. Journal of Iranian Energy Economics, 17, 67-98. [In Persian]
Bano, S., Zhao, Y., Ahmad, A., Wang, S., & Liu, Y. (2018). Identifying the impacts of human capital on carbon emissions in Pakistan. Journal of Cleaner Production, 183, 1082–1092. https://doi.org/10.1016/j.jclepro.2018.02.008
Burgess, R. (2000). The Compact City Debate: a Global Perspective. Compact Cities: Sustainable Urban Forms for Developing Countries, 9-24.
Burton, E. (2000). The Compact City: Just or Just Compact? A Preliminary Analysis. Urban Studies, 37(11): 1969-2006.
Can, M., & Ahmed, Z., (2022). Towards sustainable development in the European Union countries: Does economic complexity afect renewable and non-renewable energy consumption? Sustainable Development, 1–13. https://doi. org/10.1002/sd.2402
Cleveland, C. J., Kaufmann, R. K., & Stern, D. I. (2000). Aggregation and the Role of Energy in the Economy. Ecological Economics, 32(2), 301-317.
Dargahi, Hassan., Biabani Khameneh, Kazem. (2016). The Role of Price, Income, and Efficiency Factors in Energy Intensity in Iran. Economic Research Journal, 115, 355-384. [In Persian]
Destek, M. A., & Manga, M. (2021). Technological innovation, financialization, and ecological footprint: evidence from BEM economies. Environmental Science and Pollution Research, 28, 21991–22001.
Dinda, S. (2004). Environmental Kuznets curve hypothesis: A survey. Ecological Economics, 49(4), 431–455. https:// doi.org/10.1016/j.ecolecon.2004.02.011
Ebrahimi, Mohsen., Mamipour, Siab., Bani Mashhadi Ali, Milad. (2019). Investigating the Factors Affecting Energy Intensity with an Emphasis on Structural Breaks in Iran. Economic Research (Growth and Sustainable Development), 19(2), 87-107. [In Persian]
Fallahi, Esmail., Khalilian, Sadegh. (2009). Comparing the Importance of Petroleum Products and Electricity with Other Production Factors in Iran's Agricultural Sector. Journal of Agricultural Economics Research, Vol. 1, No. 2. [In Persian]
Fang, J., Gozgor, G., Mahalik, M. K., Padhan, H., & Xu, R. (2021). The impact of economic complexity on energy demand in OECD countries. Environmental Science Pollution Research, 28, 33771–33780. https://doi.org/10. 1007/s11356-020-12089-w
Fathizadeh, Hossein., Nonnejad, Masoud., Haghighat, Ali., Aminifard, Abbas. (2020). The Relationship between Economic Growth, Energy Intensity, and Financial Development: A Comparison of the Economies of Iran and Turkey. Applied Economics Journal, 31, 19-42. [In Persian]
Ghasemi, Abdolrasoul., Mohammadzadeh Ardabil, Roghieh. (2014). The Impact of Information and Communication Technology on Energy Intensity in the Transportation Sector. Journal of Iranian Energy Economics, 4(13), 169-190. [In Persian]
Goli, Younes., Mehnatfar, Yousef. (2020). The Impact of Industrialization and Urbanization on Energy Efficiency in Iran’s Provinces (Spatial Econometrics Approach). Economic Policy Journal, 23, 167-188. [In Persian]
Hollinger, Keith H. (2008). Trade Liberalization and the Environment: A Study of NAFTA's Impact in El Paso, Texas and Juarez, Mexico. Virginia Polytechnic Institute and State University, 1-79
Ibrahim, M.H., Law, S.H., (2016). Institutional quality and CO2 emissionetrade relations: evidence from sub-saharan Africa. South Afr. J. Econ. 84 (2), 323e340.
Irandoust, M. (2016). The Renewable Energy-Growth Nexus with Carbon Emissions and Technological Innovation: Evidence from the Nordic countries. Ecological Indicators, 69 (1), 118-125
Islam, M. S. (2021). Does financial development cause environmental pollution? Empirical evidence from South Asia. Environmental Science and Pollution Research, Published Online: 17 August, 10.1007/s11356-021-16005-8.
Jiang, L., Folmer, H., and Ji, M. (2014). The Drivers of Energy Intensity in China: A Spatial Panel Data Approach. China Economic Review, Vol. 31, pp. 351-360.
Kopidou, D. Tsakanikas, A. Diakoulaki, D. Common (2016). Common Trends and Drivers of CO2 Emissions and Employment: a Decomposition Analysis in the Industrial Sector of Selected European Union Countries. Journal of Cleaner Production, 112: 4159-4172.
Kurniawan, R., Sugiawan, Y., & Managi, S. (2021). Economic growth –   environment nexus: An analysis based on natural capital component of inclusive wealth. Ecological Indicators, 120, 10698.
Leitao, Alexandra (2010). Corruption and Environmental Kuznets Curve Empirical Evidence for Sulfur. Ecological Economics, No. 66, pp. 2191- 2201
Maboudi, Reza., Dareh Nazari, Zeinab. (2023). The Impact of Financialization on Environmental Pollution in Iran. Journal of New Economy and Trade, 17(50), 153-179. [In Persian]
Maji, I. K., Habibullah, M. S., & Saari, M. Y. (2017). Financial development and sectoral CO2 emissions in Malaysia. Environmental Science and Pollution Research, 24, 7160– 7176.
Millera, H.C., Millsc, G.N., Bemboa, D.G., Macdonaldb, J.A., (1998). Induction of cytochrome p4501A (CYP1A) in Trematomus bernacchiias an indicator of environmental pollutionin Antarctica. Aquatic Toxicology. 44 (3), 183e193.
Mosavian, Seyyed Mehdi., Karimi Takkanlou, Zahra., Sadeghi, Seyyed Kamal., Pourabbadullahan Kouich, Mohsen. (2018). The Impact of Government Expenditure and Foreign Direct Investment on Energy Intensity in Manufacturing Industries of Iran's Provinces: A Spatial Econometrics Approach. Journal of Iranian Energy Economics, 28, 157-184. [In Persian]
Motameni, Mani., Zabiri, Hadi. (2023). Analyzing the Relationship between Social Technology and Economic Complexity Using a PVAR Model. Iranian Journal of Economic Research, 27(91), 223-255. [In Persian]
Noferesti, Mohammad. (2012). Unit Root and Cointegration in Econometrics. Rasa Cultural Services Institute. [In Persian]
Oliner, SD & Sichel, DE, (2003). Information Technology and Productivity: Where Are We Now and Where Are We Going? Technology, Growth and Labor Market, 41-94.
Rafque, M. Z., Doğan, B., Shaiara Husain, S., Huang, S., & Shahzad, U. (2021). Role of economic complexity to induce renewable energy: Contextual evidence from G7 and E7 countries. International Journal of Green Energy, 18(7), 745–754. https://doi.org/10.1080/15435075.2021. 1880912.
Sadorsky, P. (2010). The impact of financial development on energy consumption in emerging economies. Energy Policy, 3, 2528–2535.
sadorsky, P. (2012). Energy Consumption, Output and Trade in South America. Energy Economics, 34(2), 476-488.
Sarzaeem, Ali. (2018). Economic Insight for Everyone. Termeh Publications, Fourth Edition. [In Persian]
Seif, Allah Morad., Hamidi Rezi, Davoud. (2016). The Impact of Selected Knowledge-Based Economy Indicators on Energy Intensity of Iran's Provinces. Journal of Iranian Energy Economics, 18, 101-145. [In Persian]
Shahzad, U., Fareed, Z., Shahzad, F., & Shahzad, K. (2021). Investigating the nexus between economic complexity, energy consumption and ecological footprint for the United States: New insights from quantile methods. Journal of Cleaner Production, 279, 123806. https://doi.org/10.1016/j.jclepro.2020. 123806.
Yan, Huijie (2015). Provincial Energy Intensity in China: The Role of Urbanization. Energy Policy, vol. 86, pp 635–650.
Zafar, M. W., Zaidi, S. A. H., Khan, N. R., Mirza, F. M., Hou, F., & Kirmani, S. A. A. (2019). The impact of natural resources, human capital, and foreign direct investment on the ecological footprint: The case of the United States. Resources Policy, 63, 101428. https://doi.org/10.1016/j. resourpol.2019.101428.