نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری رشته اقتصاد نفت و گاز، دانشگاه علامه طباطبائی، تهران، ایران.

2 دانشیار گروه اقتصاد انرژی، دانشگاه علامه طباطبائی، تهران، ایران.

3 استاد گروه اقتصاد نظری، دانشگاه علامه طباطبائی، تهران، ایران.

چکیده

نگرانی‌های زیست‌محیطی و گرمایش کره زمین، تداوم استفاده از سوخت‌های فسیلی به‌ویژه نفت را با چالش مواجه کرده است. واکنش جامعه جهانی به مقابله با تغییر اقلیم، امضا توافقنامه پاریس در سال 2015 بود. هیئت بین دولتی تغییر اقلیم، برای دستیابی به هدف محدود کردن افزایش دما به زیر 5/1درجه سلسیوس نسبت به دوران قبل از صنعتی شدن، سناریوهایی را با در نظر گرفتن کاهش مصرف سوخت‌های فسیلی و افزایش مصرف انرژی‌های تجدیدپذیر تدوین کرده است. این موضوع برای اقتصادهای متکی بر درآمدهای نفتی اوپک، تهدیدی جدی به شمار می‌آید. در این پژوهش، به منظور بررسی آثار سیاست‌های هیئت بین دولتی تغییر اقلیم سازمان ملل بر عرضه و تقاضای نفت اوپک از رویکرد اقتصادسنجی سری زمانی معادلات هم‌‌انباشتگی و الگوی تصحیح خطای برداری استفاده شده است. متغیرهای مدل شامل تولید و قیمت واقعی نفت اوپک، شاخص تولیدات صنعتی کشورهای توسعه‌یافته و نوظهور و شاخص قیمت انرژی‌های تجدیدپذیر می‌باشند که به صورت ماهانه برای دوره 2021-1986 به کار گرفته شده‌اند. نتایج نشان می‌دهد براساس ضرایب برآوردی، تغییرات عرضه اوپک در بدبینانه‌ترین سناریو هیئت بین دولتی تغییر اقلیم سازمان ملل، 40 درصد کاهش در سال 2030 و 94 درصد کاهش در سال 2050 نسبت به سال 2010 خواهد بود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

An Analysis of Crude Oil Supply and Demand in Oil-Exporting Countries (OPEC) and the Impact of Suggested Policies by the Intergovernmental Panel on Climate Change (IPCC)

نویسندگان [English]

  • Zinat Goli 1
  • Hamid Amadeh 2
  • taymoor mohamadi 3

1 Ph.D. Student in Oil and Gas Economics, Allameh Tabataba'i University, Tehran, Iran.

2 Associate Professor, Energy Economics, Allameh Tabataba'i University, Tehran, Iran.

3 Professor, Department of Theoretical Economics, Allameh Tabataba'i University, Tehran, Iran

چکیده [English]

Global greenhouse gas emissions have risen from 31,553 million tons of CO2 equivalent in 1990 to 46,187 million tons in 2022. According to the United Nations Intergovernmental Panel on Climate Change (IPCC), since the late 19th century, the Earth’s average temperature has increased by 1.1 degrees Celsius.
Every decade since 1960 has been warmer than the previous one, with the last decade being the hottest on record. The warming caused by human activities and greenhouse gas emissions has currently reached about 1 degree Celsius above pre-industrial levels. Over the past two decades, global scientific and political communities have increasingly focused on the issue of global warming and its associated climate changes. The historic Paris Agreement, signed on December 12, 2015, during the 21st Conference of the Parties (COP21) to the UN Climate Change Convention, was a significant step toward combating climate change and addressing the challenges of reducing emissions and investing in a low-carbon, resilient, flexible, and sustainable economy. The agreement, signed by 195 countries, came into force on November 4, 2016. Under the Paris Agreement, countries committed to reducing greenhouse gas emissions to prevent the global average temperature from rising more than 2 degrees Celsius above pre-industrial levels, and to pursue efforts to limit the increase to 1.5 degrees Celsius above pre-industrial levels.
Following the agreement, countries through the UN Climate Change Convention asked the IPCC to provide a special report on the impacts of global warming of 1.5 degrees Celsius above pre-industrial levels and related global greenhouse gas pathways. In the IPCC report, supported by 133 researchers, various greenhouse gas emission pathways to achieve the 1.5-degree goal were outlined. Achieving this goal will require significant reductions in greenhouse gas emissions, with a major focus on the energy sector. Four proposed scenarios, which aim to reach net-zero carbon emissions by 2050, predict a sharp decline in the use of fossil fuels. However, the type of fuel and the speed of the transition in fuel consumption vary considerably, especially for coal, oil, and gas, through 2030. Coal faces the most severe reductions, with consumption needing to decrease by 59% to 78% by 2030 compared to 2010. Natural gas has a better outlook, with predictions ranging from a one-third increase to a one-quarter decrease in different scenarios. Oil has the most uncertain future, with the fourth scenario, based on bioenergy combined with carbon capture and storage (BECCS), predicting an 86% increase in oil consumption compared to 2010. Given the uncertain future of oil in these scenarios, analyzing the impact of implementing each of the IPCC's proposed scenarios on OPEC member countries, whose economies are heavily reliant on oil revenues, is crucial. The innovation of this research lies in examining the effects of climate change policies on oil-producing and exporting OPEC countries, including Iran, using a time-series econometric approach, co-integration equations, and a vector error correction model.
Methods and Material
In this research, to examine the effects of the IPCC scenarios, which are based on reducing global fossil fuel consumption, on OPEC’s oil demand and supply, a time-series econometric approach was used. Co-integration equations were employed to estimate long-term relationships, and the vector error correction model was applied for short-term estimates. Given the significance of reduced demand for OPEC countries, which are economically dependent on oil export revenues, data on the production and price of OPEC oil were used. Additionally, the long-term effects of environmental actions under the IPCC scenarios, which replace fossil fuels with renewable energy by 2030 and 2050, were incorporated into the model using renewable energy price variables. Variables used in the supply and demand functions include OPEC oil production, OPEC oil prices adjusted for the U.S. consumer price index, industrial production indices for developed and emerging countries, and renewable energy price indices. The research data were gathered monthly from 1986 to 2022. OPEC oil price and production statistics were obtained from OPEC, and the U.S. consumer price index data were sourced from the World Bank. The industrial production index (IP) for developed countries was calculated as a weighted average of IP from the U.S., Japan, Germany, France, the U.K., Italy, Canada, Spain, the Netherlands, Sweden, Norway, Belgium, Austria, Denmark, Finland, Greece, Ireland, Portugal, and Luxembourg, with weights based on the GDP share of each country in total GDP. For emerging countries, the IP index was similarly calculated for China, Brazil, India, South Korea, Mexico, Turkey, and Indonesia. The GDP data were obtained from the World Bank, and IP data from the International Monetary Fund. Renewable energy prices were based on the weighted average levelized cost of energy (LCOE) for renewable sources such as concentrated solar power, offshore and onshore wind power, and photovoltaic solar energy. The weights were based on each energy type's share of total renewable energy production, and the LCOE data were published by the International Renewable Energy Agency. Initially, the industrial production indices for developed and emerging countries, as well as the renewable energy price index, were seasonally adjusted.
Table 1. Long-term supply and demand relationships for oil based on Johansen's method.
 




variables


OPEC Oil Supply function


OPEC Oil Supply function




OPEC oil production


1


1




Real price of OPEC oil


0.22
(0.05)


-0.05
(0.02)




Non-OPEC oil production


1.56
(0.41)


0




IP(Advanced economic)


0


0.76
(0.16)




IP(Emerging economic)


0


0.58
(0.07)




Renewable energy price


0


0.26
(0.06)




Error correction term


0.03-
)0.009)


0.08-
(0.003)




Results and Discussion
OPEC adopts two approaches in the global oil market: a strategic approach, where OPEC acts similarly to non-OPEC producers and amplifies the effect of price shocks, and an adaptive approach, where OPEC seeks to balance non-OPEC production changes and stabilize oil price fluctuations. The estimated coefficients indicate that during the study period, OPEC countries, alongside the increase in non-OPEC production, attempted to maintain their market share, often increasing production to force high-cost producers out of the market. This finding is consistent with those of Bog, Pal, and colleagues (2016), who viewed OPEC as a dominant producer seeking to protect market share by limiting competitors like shale oil producers.
The results of the model estimation indicate a direct relationship between OPEC oil supply and real oil prices, with a price elasticity of oil supply of 0.22. Additionally, a 1% increase in non-OPEC production leads to a 1.56% increase in OPEC oil production. The price elasticity of oil demand is negative at -0.05, with demand from developed countries having a more significant impact on OPEC oil demand than demand from emerging countries. Furthermore, a 1% decrease in renewable energy prices reduces OPEC oil demand by 0.26%. Therefore, in the pessimistic IPCC scenario, where oil consumption declines by 37%, OPEC’s oil supply could decrease by 40% by 2030.
Based on the findings, it is recommended that OPEC regularly monitor the pace of renewable energy development up to 2030 and adjust its strategies accordingly. Although the growth of industrial production in developed countries has a more significant effect on OPEC oil demand, trends in oil imports from China and India, which accounted for about 40% of OPEC’s exports in 2019, versus declining imports from the U.S. and European OECD countries, which have dropped by 40%, should also be considered by OPEC.

کلیدواژه‌ها [English]

  • Crude oil demand
  • Crude oil supply
  • Renewable energies
  • structural cointegration
  • vector error correction model (VECM)
رجبیان، وحید؛ طالبلو، رضا و ارباب، حمیدرضا. (1399). سرمایه‌گذاری در صنعت نفت و گاز با استفاده از تخمین مصرف نفت خام و گازطبیعی در ایران با رویکرد مدل VECM، فصلنامه علمی پژوهشی دانش سرمایه‌گذاری، سال نهم، شماره 34.
‌سالک، نوید و خورسندی، مرتضی. (1402). طراحی الگوی بازار نفت و مقایسه پیش‌بینی‌های قیمت نفت خام، مجله تحقیقات مدلسازی اقتصادی، (47)13، 114-73.
سالک، نوید؛ خورسندی، مرتضی؛ فریدزاد، علی؛ قاسمی، عبدالرسول و محمدی، تیمور. (1401). بررسی نقش عوامل بنیادین بازار در قیمت جهانی نفت، فصلنامه مطالعات اقتصاد انرژی، سال هجدهم، شماره 75، ص 82-35
گلستانی، شهرام؛ گرگینی، مصطفی و حاج عباسی، فاطمه. (1391). مقایسه توانایی پیش‌بینی مدل‌های VAR، ARIMA و شبکه‌های عصبی (ANN): تقاضای جهانی نفت اوپک، پژوهشنامه اقتصاد انرژی ایران، دوره 1، شماره 4، صفحات 145-16.
معمارزاده، عباس و خیابانی، ناصر. (1396). بررسی اثرات پویای تکانه‌های ساختاری بازار جهانی نفت خام بر خرج‌کرد بخش خصوصی و دولتی ایران: رهیافت مدل پویای ساختاری، فصلنامه نظریه‌های کاربردی اقتصاد، سال چهارم، شماره 4، تابستان 1396، صفحات 194-169.
نظری، روح‌اله؛ خداپرست مشهدی، مهدی و سیفی، احمد. (1396). تحلیل رفتار ایران در سازمان اوپک: کاربردی از مدل‌های مارکف سوئیچینگ، فصلنامه پژوهش‌های اقتصادی (رشد و توسعه پایدار)، سال هفدهم، شماره دوم، تابستان 6931، صفحات 671-641 .
References
 
Aguilera, Roberto. Radetzki, Marian. (2015). The Price of Oil. Cambridge University Press, Cambridge. https://doi.org/10.1017/ CBO9781316272527.
Alhajji, A.F., Huettner, David )2000(. OPEC and world crude oil markets from 1973 to 1994: cartel, oligopoly, or competitive?. Energy, J. 21 (3). pp.31-60. http://www.jstor. org/stable/41322890.
Anderson, S.T., Kellogg, R., and Salant, S.W. (2018). Hotelling Under Pressure, Journal of Political Economy, 126, pp.984-1026.
Anderson, Soren, Ryan, Kellogg, Salant, S. )2018(. Hotelling under pressure. J. Polit. Econ. 126 (3). pp.984-1026. https://doi.org/10.1086/697203.
Antolin-Diaz, J., and J.F. Rubio-Ramirez (2018). Narrative Sign Restrictions for SVARs, American Economic Review, 108, pp. 2802-2839.
Baumeister, Christiane., Hamilton, James D. )2019(. Structural interpretation of vector autoregressions with incomplete identification: revisiting the role of oil supply and demand shocks. Am. Econ. Rev. 109 (5). 1873-1910. https://doi.org/10.1257/ aer.20151569.
Breitenfellner, ndreas., Crespo Cuaresma, Jesús., Keppel, Catherine. (2009). Determinants of Crude Oil Prices: Supply, Demand, Cartel or Speculation?. Monetary Policy & the Economy, Oesterreichische Nationalbank (Austrian Central Bank). issue 4, pp. 111-136.
Bjørnland, H.C. (2019). Supply Flexibility in the Shale Patch: Facts, no Fiction, CAMP Working Paper Series No 8/2019, manuscript, BI Norwegian Business School.
Bjørnland, H.C., Nordvik, F.M., and Rohrer, M. (2019). Supply Flexibility in the Shale Patch: Evidence from North Dakota, CAMA Working Paper No. 56/2019. manuscript, Norwegian Business School.
Black, Geoffrey, LaFrance, Jeffrey T.)1998(. Is hotelling’s rule relevant to domestic oil production?. J. Environ. Econ. Manag., 36 (2). pp.149-169. https://doi.org/10.1006/ jeem.1998.1042.
Boug, Pål., Cappelen, Ådne., Rygh Swensen, Anders. (2016). Modelling OPEC behaviour. Theory and evidence, Discussion Papers 843, Statistics Norway, Research Department.
Caldara, D., Cavallo, M., and Iacoviello, M. (2019). Oil Price Elasticities and Oil Price Fluctuations. Journal of Monetary Economics, 103, pp.1-20.
Caldara, Dario., Cavallo, Michele. and Iacoviello, Matteo )2019(. Oil price elasticities and oil price fluctuations. Journal of Monetary Economics 103, pp.1-20. https://doi.org/ 10.1016/j.jmoneco.2018.08.004.
Campbell, Colin, Laherr`ere, Jean. (1998). The end of cheap oil. Sci. Am. 278 (3). pp.78-84. https://www.scientificamerican.com/article/the-end-of-cheap-oil/.
Durand-Lasserve, Olivier., Pierru, Axel. (2021). Modeling world oil market questions: An economic perspective. Energy Policy, Volume 159. https://doi.org/10.1016/j.enpol.2021.112606
Golestani, Shahram, Gorgini, Mostafa, and Hajabbasi, Fatemeh (2012). A comparison of the predictive ability of VAR, ARIMA, and Artificial Neural Network (ANN) models: Global oil demand of OPEC. Iranian Journal of Energy Economics Research, 1(4). 16-145. [In persian]
Golding, G. (2019). Don’t Expect U.S. Shale Producers to Respond Quickly to Geopolitical Supply Disruption.
Golombek, Rolf, Irarrazabal, Alfonso A., Lin, Ma, )2018(. OPEC’s market power: an empirical dominant firm model for the oil market. Energy Econ. 70, 98-115. https:// doi.org/10.1016/j.eneco.2017.11.009.
Gron wald, M. )2009(. Jumps in Oil Prices-Evidence and Implications. ifo Working Paper 75.
Güntner, Jochen H.F., 2014. How do oil producers respond to oil demand shocks?. Energy Economics, vol. 44(C). pages 1-13. DOI: 10.1016/j.eneco.2014.03.012
Hammoudeh, Shawkat, Madan, Vibhas, )1995(. Expectations, target zones, and oil price dynamics. J. Pol. Model, 17 (6). 597-613. https://doi.org/10.1016/0161-8938(95) 00022-4.
Herrera, A.M., and S.K. Rangaraju (2020). The Effect of Oil Supply Shocks on U.S. Economic Activity: What Have We Learned?. Journal of Applied Econometrics, 35, 141-159.
Hubbert, M., King, )1956(. Nuclear Energy and the Fossil Fuels. Shell Development Company, Exploration and Research Production Division, No. 95, Houston, Texas.
Huppmann, Daniel. and Ruud, Egging. (2014). Market power, fuel substitution and infrastructure-a large-scale equilibrium model of global energy markets. Energy,75,483-500.
Inoue, A., and L. Kilian (2020). The Role of the Prior in Estimating VAR Models with Sign Restrictions. Working Paper 2030, manuscript, Federal Reserve Bank of Dallas.https://doi.org/10.24149/wp2030
IPCC. (2019). Global Warming of 1.5°Summary for Policymakers Technical Summary Frequently Asked Questions Glossary
Kilian, L. (2008a). Exogenous Oil Supply Shocks: How Big Are They and How Much Do They Matter for the U.S. Economy?. Review of Economics and Statistics, 90(2). 216-240
Kilian, L. (2008b). The Economic Effects of Energy Price Shocks, Journal of Economic Literature, 46, 871-909.
Kilian, L. (2020). Facts and Fiction in Oil Market Modeling, manuscript, Federal Reserve Bank of Dallas.
Kilian, Lutz, (2009). Not all oil price shocks are alike: disentangling demand and supply shocks in the crude oil market. Am. Econ. Rev. 99 (3). 1053-1069. https://doi.org/ 10.1257/aer.99.3.1053.
Kilian, Lutz, Murphy, Daniel P. (2014(. The role of inventories and speculative trading in the global market for crude oil. J. Appl. Econom. 29 (3). 454-478. https://doi.org/ 10.1002/jae.2322.
Lewis, Tracy R., Schmalensee, Richard. (1980(. On oligopolistic markets for nonrenewable natural resources. Q. J. Econ, 95 (3), 475-491. https://doi.org/10.2307/1885089.
Lin, Cynthia, Wagner, Gernot. (2007(. Steady-state growth in a Hotelling model of resource extraction. J. Environ. Econ. Manag, 54 (1), 68-83. https://doi.org/ 10.1016/j.jeem.2006.12.001.
Livernois, J. )2009(. On the Empirical Significance of the Hotelling Rule. In: Review of Environmental Economics and Policy,3(1). 22-41
Mamrazadeh, Abbas and Khiabani, Naser. (2017). Investigating the effects of dynamic structural shocks in the global crude oil market on the expenditures of Iran's private and public sectors: A dynamic structural model approach. Journal of Applied Economic Theories, 4(4). 169-194. [In Persian]
Manne, Alan, Mendelsohn, Robert, Richels, Richard. (1995(. MERGE: a model for evaluating regional and global effects of GHG reduction policies. Energy Pol., 23 (1). 17-34. https://doi.org/10.1016/0301-4215(95)90763-W.
McGlade, C.E., )2012(. A review of the uncertainties in estimates of global oil resources. Energy, 47 (1). 262-270. https://doi.org/10.1016/j.energy. 2012.07.048.
Montiel Olea, José L. & Stock, James H. & Watson, Mark W., 2021. Inference in Structural Vector Autoregressions identified with an external instrumentJournal of Econometrics, Elsevier, vol. 225(1), pages 74-87.
Nazari, Rouhollah, Khodaparast Mashhadi, Mehdi, and Seifi, Ahmad. (2017). Analysis of Iran's behavior in the OPEC: An application of Markov Switching models. Quarterly Journal of Economic Research (Growth and Sustainable Development),17(2), pp. 641-671. [In Persian]
Newell, Richard. and Prest, Brian. )2019(. The unconventional oil supply boom: aggregate price response from microdata. Energy J.,40 https://doi.org/10.5547/ 01956574.40.3.rnew.
Pierru, Axel., Smith, James L. and Almutairi, Hossa. (2020). OPEC’s pursuit of market stability. Econ. Energy Environ. Pol, 9 (2), pp.51-69. https://doi.org/10.5547/2160-5890.9.2. apie.
Pindyck, Robert S. (1978). The optimal exploration and production of nonrenewable resources. J. Polit. Econ., 86 (5). pp.841-861. http://www.jstor.org/stable/1828412.
Pindyck, Robert S. (1980). Uncertainty and exhaustible resource markets. J. Polit. Econ., 88 (6), pp.1203-1225. https://doi.org/10.1086/260935.
Rajabian, Vahid., Talebloo, Reza. and Arbab, Hamidreza. (2020). Investment in the oil and gas industry using the estimation of crude oil and natural gas consumption in Iran: A VECM model approach. Journal of Investment Knowledge, 9(34). [In Persian]
Rioux, Bertrand., Al Jarboua, Fatih., Karanfil, Abdullah, Pierru., Axel, Al Rashed., and Warda, Colin. (2022). Cooperate or Compete? Insights from Simulating a Global Oil Market with No Residual Supplier, The Energy Journal, 43(2).
Salek, Navid, and Khorsandi, Morteza (2023). Design of the oil market pattern and comparison of crude oil price predictions. Journal of Economic Modeling Research, (47)13, pp.114-73. [In persian]
Salek, Navid., Khorsandi, Morteza., Faridzad, Ali., Ghasemi, Abdolrasoul. and Mohammadi, Taymoor (2022). Investigating the role of fundamental market factors in the global oil price. Journal of Energy Economics Studies, 18(75). pp.35-82. [In Persian]
Solow, Robert M. and Wan, Frederic Y., )1976(. Extraction costs in the theory of exhaustible resources. Bell J. Econ. 7 (2). pp.359-370. https://doi.org/10.2307/3003261.
Stiglitz, Joseph. (1976(. Monopoly and the rate of extraction of exhaustible resources. Am. Econ. Rev. 66 (4). pp.655-661. https://www.jstor.org/ stable/1806704
The International Renewable Energy Agency (IRENA). https://www.irena. org/
World Resources Institute, https://www.climatewatchdata.org/
 
 
.