نوع مقاله : مقاله پژوهشی

نویسنده

کارشناس ارشد رشته اقتصاد نظری، دانشگاه تهران، تهران، ایران.

چکیده

لزوم گسترده فعالیت‌های توسعه‌ای و روند در حال رشد تقاضای انرژی، احداث نیروگاه‌های جدید برای پاسخ نیازها، به امری ضروری تبدیل شده است. با توجه به مسائل زیست‌محیطی و پایان‌پذیر بودن منابع فسیلی، توجه به نیروگاه‌‌های تجدیدپذیر برای گذار به تولید انرژی سبز امری مهم قلمداد می‌شود. از موارد مهم در احداث سیستم‌های تولید انرژی علاوه بر در نظر گرفتن مسائل مالی، اقتصادی و جغرافیایی؛ ارزیابی و بررسی اثرات زیست‌محیطی نیروگاه‌ها از منظر میزان انتشار گازهای گلخانه‌ای است. هدف از این تحقیق تعیین نقش نیروگاه‌های تجدیدپذیر و تجدیدناپذیر در انتشار کل گازهای ایجاد شده در یک سال از دوره بهره‌برداری است که از نرم‌افزار تجزیه و تحلیل RETscreen برای برآورد ضریب انتشار و روش تحلیلی هزینه منافع برای ارزیابی اثرات زیست‌محیطی استفاده شده است. براساس نقش ارزش هر تن کربن دی‌اکسید و نرخ تنزیل اثرات زیست‌محیطی در برآورد ارزش هر تن کربن دی‌اکسید منتشر شده، ضریب انتشار سیستم‌های تجدیدپذیر در دوره بهره‌برداری صفر و برای سیستم‌های توربین گازی، موتور دوطرفه گازی، موتور دو طرفه بیوگاز و توربین بخار ـ زغال سنگ معادل 700، 747، 45 و 1،509 میلیارد ریال هزینه انتشار برآورد می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Environmental assessment of renewable and non-renewable power plants for electricity generation from the perspective of CO2 emission

نویسنده [English]

  • Reza Bakhshi

Mr. University of Tehran Faculty of Economics Tehran, Iran.

چکیده [English]

The unprecedented increase in energy demand due to population growth and developmental needs has intensified the necessity for constructing new power plants to meet this demand. This study aims to examine the environmental impacts of renewable and non-renewable power plants from the perspective of greenhouse gas emissions. The RETScreen software has been employed to calculate emission factors, and a cost-benefit analysis approach has been used to evaluate environmental impacts. Estimates reveal that renewable power plants such as wind and solar plants have zero emissions, whereas non-renewable power plants emit significant amounts of carbon dioxide.
This study calculates the emission factors of power plants per megawatt-hour of electricity generation. According to the data, coal-fired power plants have the highest emission factor, equivalent to 1.0734 tons of carbon dioxide per megawatt-hour, whereas this factor is zero for renewable energy-based power plants. Furthermore, an analysis of environmental costs indicates that non-renewable power plants incur substantial costs. For instance, the annual environmental cost of operating a coal-fired power plant is estimated at 1,509 billion IRR.
This research provides guidance to energy policymakers, emphasizing that selecting renewable technologies not only helps reduce greenhouse gas emissions but also eliminates environmental costs. Adopting supportive policies for the utilization of clean energy can pave the way for a sustainable future in energy production while minimizing the adverse environmental impacts of non-renewable power plants.

کلیدواژه‌ها [English]

  • environmental effects
  • plant
  • renewable
  • non-renewable
دستورالعمل محیط زیست، بهداشت و ایمنی نیروگاه‌های خورشیدی ـ فتوولتاییک. (1398،10). ttps://www.satba.gov.ir/suna_content/media/image/2020/02/8082_orig.pdf
منظور، داوود؛ فرمد، مجید؛ آریان‌پور، وحید و شفیعی، احسان‌الدین. (1393). ارزیابی ترکیب بهینۀ نیروگاه‌های کشور با لحاظ هزینه‌های زیست‌محیطی. محیط‌شناسی، 40(2)، 430-415.
کارگری، نرگس و مستوری، رضا. (1389). مقایسه انتشار گازهای گلخانه‌ای در انواع نیروگاه‌های برق با استفاده از رویکرد LCA. نشریه انرژی ایران، 13(2)، 78-67.
محمدحسینی، ناهید؛ رباطی، مریم و عمیدپور، مجید. (1398). ارزیابی اثرهای محیط‌زیستی احداث نیروگاه‌های تجدیدپذیر خورشیدی ـ بادی در مطالعه موردی منطقه ویژه اقتصادی سلفچگان. فصلنامه علوم محیطی، (4)19، 212-193.
شکوری‌گنجوی، حامد؛ کاظمی، عالیه؛ عبداله‌‌پور، سپهر وگلدانساز، سیدمحمدرضا. (1399). ارزیابی اقتصادی، اجتماعی و زیست‌محیطی تولید برق از تکنولوژی‌های تجدیدپذیر و گازی. فصلنامه علمی - ترویجی انرژی ایران، (3)23، 33-7.
نوروزی‌پور، ماریا؛ طباطبایی کلور، رضا و متولی، علی. (1402). ارزیابی اثرات زیست‌محیطی تولید الکتریسیته در نیروگاه بادی (مطالعه موردی: کهک قزوین و آقکند میانه). ماشین‌های کشاورزی، 13(4)، 426-405.
ترک، علی؛ عزمی، آئیژ و مرادی، امید علی. (1401). ارزیابی آثار نیروگاه شهید مفتح همدان بر روستاهای پیرامون. پژوهش‌های روستائی، 13(1)، 139-122.
عبدلی، قهرمان. (1388). تخمین نرخ تنزیل اجتماعی برای ایران. پژوهشنامه اقتصادی. 9(34). 156-135.
Abdulli, hero. (2009). Estimation of social discount rate for Iran. Economic research paper. 9(34). 156-135. [In Persian]
Acharya, Shantanu. (2022). Analytic assessment of renewable potential in Northeast India and impact of their exploitation on environment and economy. b, 29(20), 29704-29718.
Afgan, Naim, & Carvalho, Maria. (2002). Multi-criteria assessment of new and renewable energy power plants. Energy, 27(8), 739-755.
Al Garni, Hassan, & Awasthi, Anjali. (2018). Solar PV power plants site selection: A review. Advances in renewable energies and power technologies, 57-75.
Al-Mulali, Usama. (2014). GDP growth-energy consumption relationship: revisited. International Journal of Energy Sector Management, 8(3), 356-379.
Argyroudis, Sotirios, Mitoulis, Stergios Aristoteles, Hofer, Lorenzo, Zanini, Mariano Angelo, Tubaldi, Enrico, & Frangopol, Dan. (2020). Resilience assessment framework for critical infrastructure in a multi-hazard environment: Case study on transport assets. Science of the Total Environment, 714, 136854.
Arvesen, Anders, & Hertwich, Edgar. (2012). Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs. Renewable and sustainable energy reviews, 16(8).
Avtar, Ram, Tripathi, Saurabh, Aggarwal, Ashwani Kumar, & Kumar, Pankaj. (2019). Population-urbanization-energy nexus: a review. Resources, 8(3), 136.
Bineshpour, Meghdad, Payandeh, Khoshnaz, Nazarpour, Ahad, & Sabzalipour, Sima. (2021). Assessment of human health risk and surface soil contamination by some toxic elements in arak city, Iran. Journal of advances in environmental health research, 9(4), 321-332.
Bolinger, Mark, & Bolinger, Greta. (2022). Land requirements for utility-scale PV: An empirical update on power and energy density. IEEE Journal of Photovoltaics, 12(2), 589-594.
Celik, Ilke, Mason, Brooke, Phillips, Adam, Heben, Michael, & Apul, Defne. (2017). Environmental impacts from photovoltaic solar cells made with single walled carbon nanotubes. Environmental Science & Technology, 51(8),4722-4732.
Denholm, Paul, Hand, Maureen, Jackson, Maddalena, & Ong, Sean. (2009). Land use requirements of modern wind power plants in the United States (No. NREL/TP-6A2-45834). National Renewable Energy Lab. (NREL), Golden, CO (United States).
EIA (2023). Natural gas combined-cycle power plants increased utilization with improved technology. https://www.eia.gov/todayinenergy/detail.php? id=60984#
Environmental, health, and safety guidelines for solar photovoltaic power plants. (2019,12).
https://www.satba.gov.ir/suna_content/media/image/2020/02/8082_orig.pdf. [In Persian]
Ghadikolaei, Saeed Siah Chehreh. (2021). An enviroeconomic review of the solar PV cells cooling technology effect on the CO2 emission reduction. Solar Energy, 216,468 -492.
Hannesson, Rognvaldur. (2002). Energy use and GDP growth, 1950-97. OPEC review, 26(3), 215-233.
Hernandez, Rebecca, Easter, Shane, Murphy-Mariscal, Michelle, Maestre, Fernando , Tavassoli, M, Allen, Edith, ... & Allen, Michael. (2014). Environmental impacts of utility-scale solar energy. Renewable and sustainable energy reviews, 29, 766-779.
Jay, Stephen. (2010). Strategic environmental assessment for energy production. Energy Policy, 38(7), 3489-3497.
Kargari, Narges; Mastouri, Reza. (2010). Comparison of greenhouse gas emissions from different types of power plants using the LCA approach. Iranian Energy Journal, 13(2), 67-78. [In Persian]
Kim, Dahye, Kim, Kyung-Tae, & Park, Young-Kwon. (2020). A comparative study on the reduction effect in greenhouse gas emissions between the combined heat and power plant and boiler. Sustainability, 12(12), 5144.
Liqiang, Qi, & Zhang, Yajuan. (2017). Effects of solar photovoltaic technology on the environment in China. Environmental Science and Pollution Research, 24, 22133-22142.
Mahdipour Azam, Zaeimdar Mojgan, Sekhavatjou Mohammad Sadegh, Jozi Sayed Ali. Investigating the non-carcinogenic risk and hazard quotient of heavy metals in high-traffic districts of tehran metropolis, Iran. Journal of advances in environmental health research[internet]. 2021;9(4):285-298.
Manzoor, Dawood; Farmad, Majid; Arianpour, Vahid; and Shafii, Ehsanuddin. (2013). Evaluation of the optimal combination of power plants in the country in terms of environmental costs. Ecology, 40(2), 415-430. [In Persian]
Maradin, Dario. (2021). Advantages and disadvantages of renewable energy sources utilization. International Journal of Energy Economics and Policy, 11(3), 176-183.
Meystre, Stéphane, & Haug, Peter.(2005). Comparing natural language processing tools to extract medical problems from narrative text. In AMIA annual symposium proceedings (Vol. 2005, p. 525). American Medical Informatics Association.
Mishra, Umesh C. (2004). Environmental impact of coal industry and thermal power plants in India. Journal of environmental radioactivity, 72(1-2), 35-40.
Mohammadi, Mahmoud, Ghasemi, Saber, Parvaresh, Hossein, & Dehghani Ghanateghestani, Mohsen. (2021). Comparing the performance evaluation models of gas refineries using ahp and topsis. Journal of advances in environmental health research, 9(4), 333-344.
Mohammed, Mohammed Kamil, Awad, Omar, Rahman, M.M, Najafi, G, Basrawi, Firdaus, Abd Alla, Ahmed, & Mamat, Rizalman. (2017). The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79, 459-474.
Mohammad Hosseini, Nahid; Rabati, Maryam; Omidpour, Majid. (2018). Assessment of the environmental impact of the construction of renewable solar-wind power plants in the case study of the Salafchagan Special Economic Zone. Environmental Science Quarterly, (4)19, 212-193. [In Persian]
Nowrozipour, Maria; Tabatabai Kalor, Reza; Tutoli, Ali (2023). Assessment of the environmental impact of electricity generation in a wind turbine (case study: Kohek Qazvin and Aghkand Middle). Agricultural machinery, 13(4), 405-426. [In Persian]
Owles, Robert, & Vellani, Karim. (2007). Vulnerability and risk assessment in the environment of care. Journal of Healthcare Protection Management: Publication of the International Association for Hospital Security, 23(2), 67-77.
Rahman, Abidur, Farrok, Omar, & Haque, Md Mejbaul. (2022). Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable and Sustainable Energy Reviews, 161, 112279.‏
Rosen, Marc. (2009). Energy sustainability: A pragmatic approach and illustrations. Sustainability, 1(1), 55-80.‏
Shakuri Ganjovi, Hamed; Kazemi, Alia; Abdulahpour, Sepehr; Guldansaz, Seyyed Mohammadreza. (2019). Economic, social, and environmental assessment of electricity generation from renewable energies and gas. Iranian Energy Promotional Scientific Quarterly, (3) 23, 33-7. [In Persian]
Singh, Vineet Kumar, & Singal, Kumar. (2017). Operation of hydro power plants-a review. Renewable and Sustainable Energy Reviews, 69, 610-619.
Tawalbeh, Muhammad, Al-Othman, Amani, Kafiah, Feras, Abdelsalam, Emad, Almomani, Fares, & Alkasrawi, Malek. (2021). Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Science of The Total Environment, 759, 143528.
Tawalbeh, Muhammad, Al-Othman, Amani, Kafiah, Feras, Abdelsalam, Emad, Almomani, Fares, & Alkasrawi, Malek. (2021). Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Science of The Total Environment, 759, 143528.
Tsoutsos, Theocharis, Gekas, Vassilis, & Marketaki, Katerina. (2003). Technical and economical evaluation of solar thermal power generation. Renewable energy, 28(6), 873-886.
Turk, Ali; Azmi, Aizeh; Moradi, Omid Ali. (2022). Assessment of the impact of the Shahid Muftah Hamadan power plant on the surrounding villages. Rural Research, 13(1), 122-139. [In Persian]
Wang, Lingmei, Ni, Weidou, & Li, Zheng. (2006). Emergy evaluation of combined heat and power plant eco-industrial park (CHP plant EIP). Resources, Conservation and Recycling, 48(1), 56-70.
Wei, Xiaoyu, Manovic, Vasilije, & Hanak, Dawid. (2020). Techno-economic assessment of coal-or biomass-fired oxy-combustion power plants with supercritical carbon dioxide cycle. Energy Conversion and Management, 221, 113143.
Yang, Dong, Liu, Jingru, Yang, Jianxin, & Ding, Ning. (2015). Life-cycle assessment of China's multi-crystalline silicon photovoltaic modules considering international trade. Journal of Cleaner Production, 94,35 -45.
Zhang, Xiliang, Ruoshui, Wang, Molin, Huo, & Martinot, Eric. (2010). A study of the role played by renewable energies in China's sustainable energy supply. Energy, 35(11), 4392-43