نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری مهندسی مالی، دانشگاه یزد، یزد، ایران

2 استادیار گروه مدیریت، دانشگاه کاشان، کاشان، ایران

چکیده

نفت خام منبع اصلی انرژی است و تقریباً یک سوم تولید جهانی انرژی را تشکیل می‌دهد. تلاطم در این بازار پیامدهای اقتصادی و مالی گسترده‌ای در پی خواهد داشت. به این دلیل، سرمایه‌گذاران هنگام سرمایه‌گذاری مالی در بازارهای نفت خام به منظور پوشش ریسک و تنوع پرتفوی، اهمیت زیادی برای پیش‌بینی تلاطم قائل هستند. استراتژی‌های سرمایه‌گذاری آن‌ها اغلب به شدت تحت تأثیر رژیم‌های تلاطمی قرار می‌گیرد. زیرا، در دوره‌های زمانی مختلف بازارهای نفت خام، تلاطم‌های شدید و ملایم وجود دارد که به حرکت چرخه‌های اقتصادی نسبت داده می‌شود. پژوهش حاضر به مقایسه توانایی‌های پیش‌بینی مدل‌های تغییر رژیم مارکفی و مارکفی پنهان تلاطمی با مدل نامتقارن جی ژی آر ـ گارچ در بازارهای نفت خام وست تگزاس اینترمیدیت و برنت پرداخته است. نتایج نشان می‌دهد که مدل جی ژی آرگارچ ـ تغییر رژیم مارکوفی از مدل جی ژی آر- گارچ مارکوفی پنهان در پیش‌بینی تلاطم در هر دو بازار بهتر عمل کرده است. درنتیجه، براساس مدل منتخب با استفاده دو معیار ارزش در معرض ریسک و کسری مورد انتظار به پیش‌بینی حداقل زیان و زیان مورد انتظار ماه دسامبر سال 2021 پرداخته شده است که نتایج نشان داده است، زیان مورد انتظار حاصل از سرمایه‌گذاری در بازار وست تگزاس اینترمیدیت بیشتر از بازار نفت برنت است.

کلیدواژه‌ها

موضوعات

 
Artzner, P., Delbaen, F., Eber, J. M. and Heath, D. (1999). Coherent measures of risk. Mathematical finance, 9(3), pp. 203- 228
Baffes, J. and Haniotis, T. (2010). Placing the recent commodity boom into perspective. Food prices and rural poverty, pp. 40-70.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3), pp. 307-327.
Cai, J. (1994). A Markov model of unconditional variance in ARCH. Journal of Business and Economic Statistics, 12(3), pp. 309-316.
Chang, K. L. (2012). Volatility regimes, asymmetric basis effects and forecasting performance: An empirical investigation of the WTI crude oil futures market. Energy Economics, 34(1), pp. 294-306.
Cheong, C. W. (2009). Modeling and forecasting crude oil markets using ARCH-type models. Energy policy, 37(6), pp. 2346-2355.
Chiarucci, R., Loffredo, M. I. and Ruzzenenti, F. (2017). Evidences for a structural change in the oil market before a financial crisis: the flat horizon effect. Research in International Business and Finance, 42,
pp. 912-921.
Chkili, W., Hammoudeh, S. and Nguyen, D. K. (2014). Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory. Energy Economics, 41, pp.1-18.
Crisostomo, R. (2015). An analysis of the Heston stochastic volatility model: Implementation and calibration using MATLAB. arXiv Preprint. https://arxiv.org/abs/02963/1502.
Di Sanzo, S. (2018). A Markov switching long memory model of crude oil price return volatility. Energy Economics, 74, pp. 351-359.
Elliott, R. J., Hunter, W. C. and Jamieson, B. M. (1998). Drift and volatility estimation in discrete time. Journal of Economic Dynamics and Control, 22(2), pp. 209-218.
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the econometric society, pp. 987-1007.
Fan, Y., Zhang, Y. J., Tsai, H. T. and Wei, Y. M. (2008). Estimating ‘Value at Risk’of crude oil price and its spillover effect using the GED-GARCH approach. Energy Economics, 30(6), pp. 3156-3171.
Glosten LR, Jaganathan R, Runkle DE (1993). On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. Journal of Finance, 48(5), pp. 1779-1801.
Gray, S. F. (1996). Modeling the conditional distribution of interest rates as a regime-switching process. Journal of Financial Economics, 42(1),
pp. 27-62.
Hamilton, J. D. and Susmel, R. (1994). Autoregressive conditional heteroskedasticity and changes in regime. Journal of econometrics, 64(1-2), pp.307-333.
Herrera, A. M., Hu, L. and Pastor, D. (2018). Forecasting crude oil price volatility. International Journal of Forecasting, 34(4), pp.622-635.
Hull, J. and White, A. (1987). The pricing of options on assets with stochastic volatilities. Journal of Finance, 42, pp.281-300.
Iglesias, E. M. and Rivera-Alonso, D. (2022). Brent and WTI oil prices volatility during major crises and Covid-19. Journal of Petroleum Science and Engineering, 110182.
Kang, S. H. and Yoon, S. M. (2013). Modeling and forecasting the volatility of petroleum futures prices. Energy Economics, 36, pp.354-362.
Klaassen, F. (2002). Improving GARCH volatility forecasts with regime-switching GARCH (pp. 223-254). Physica-Verlag HD.
Kristoufek, L. (2014). Leverage effect in energy futures. Energy Economics, 45, pp. 1-9.
Lin, Y., Xiao, Y. and Li, F. (2020). Forecasting crude oil price volatility via a HM- model. Energy Economics, 87, 104693.
Marcucci, J. (2005). Forecasting stock market volatility with regime-switching GARCH models. Studies in Nonlinear Dynamics and Econometrics, 9(4).
Mohammadi, H. and Su, L. (2010). International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models. Energy Economics, 32(5), pp. 1001-1008.
Nakajima, J. (2009). Bayesian analysis of GARCH and stochastic volatility: Modeling leverage, jumps and heavy-tails for financial time series [Technical report Mimeo]. Department of Statistical Science, Duke University.
Nelson, D.B. (1991). Conditional Heteroscedasticity in Asset Returns: A New Approach, Econometrica, 59, pp. 347-370.
Nelson, D.B. and Foster, D.P. (1994). Asymptotic Filtering Theory for Univariate ARCH Models, Econometrica, 62, pp.1-41.
Nomikos, N. and Andriosopoulos, K. (2012). Modelling energy spot prices: Empirical evidence from NYMEX. Energy Economics, 34(4), pp.1153-1169.
Poon, S. H. (2005). A practical guide to forecasting financial market volatility. John Wiley and Sons.
Rabiner, L., & Juang, B. (1986). An introduction to hidden Markov models. ieee assp magazine, 3(1), 4-16.
Rossi, A. and Gallo, G. M. (2006). Volatility estimation via hidden Markov models. Journal of Empirical Finance, 13(2), pp. 203-230.
Salisu, A. A. and Fasanya, I. O. (2013). Modelling oil price volatility with structural breaks. Energy policy, 52, pp.554-562.
Sari, R., Hammoudeh, S., Chang, C. L. and McAleer, M. (2012). Causality between market liquidity and depth for energy and grains. Energy Economics, 34(5), pp.1683-1692.
Tsay, R. S. (2014). An introduction to analysis of financial data with R. John Wiley and Sons.2nd edition.
Zakoian, J. M. (1994). Threshold heteroskedastic models. Journal of Economic Dynamics and control, 18(5), pp. 931-955.