نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، اقتصاد، دانشگاه ارومیه ایران

2 استادیار،گروه اقتصاد، دانشکده علوم اجتماعی و اقتصادی، دانشگاه الزهرا، تهران، ایران عضو هیئت علمی

چکیده

تأثیر پیشرفت فناوری بر مصرف انرژی از موضوعاتی است که مورد توجه بسیاری از محققین و سیاستگذاران قرار گرفته است. پژوهشگران متعددی تلاش کرده اند این رابطه را بر اساس شاخص های مختلف فناوری ارزیابی کنند. شاخص پیچیدگی اقتصادی یکی از معرف های جدیدی است که در سال‌های اخیر برای سنجش سطح دانش و فناوری در ساختار تولید مورد استفاده قرار گرفته است. در این مقاله از شاخص پیچیدگی اقتصادی به همراه قیمت انرژی و تولید ناخالص داخلی به عنوان عوامل تعیین کننده مصرف انرژی در ایران طی دوره 1355 تا 1396 استفاده شده است. نتایج رگرسیون کوانتایل نشان می دهد که ضرایب متغیرها در چندک‌ها متفاوت است. تأثیر پیچیدگی اقتصادی بر مصرف انرژی در همه چندک ها مثبت بوده است که نشان دهنده تسلط اثر بازگشتی بر مصرف انرژی است. کشش قیمت در همه چندک ها کمتر از یک و در دهک های بالای مصرف کمتر است. در مقابل، کشش درآمدی تقاضای انرژی در دهک‌های بالا بیشتر بوده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

How Does Economic Complexity Affect Energy Demand in Iran? New Evidence from the Quantile Regression Model

نویسندگان [English]

  • Ali Moridian 1
  • Zahra Azizi 2

1 Ph.D. Student, Economics, Urmia University, Iran

2 Assistant Professor, Department of Economics, Faculty of Social and Economic Sciences, Alzahra University, Tehran, Iran

چکیده [English]

The impact of technological advances on energy consumption is one of the topics that has been considered by many researchers and policymakers. Numerous researchers have tried to evaluate this relationship based on various technology indicators. The index of economic complexity is one of the new indicators that has been used in recent years to measure the level of knowledge and technology in the production structure. In this paper, the index of economic complexity along with energy prices and GDP have been used as determining factors of energy consumption in Iran during the period 1976 to 2018. Quantile regression results show that the coefficients of the variables are different in the deciles. The impact of economic complexity on energy consumption in all deciles has been positive, indicating the dominance of the rebound effect on energy consumption. Price elasticity is less than one in all deciles and less in the higher consumption deciles. In contrast, the income elasticity of energy demand was higher in the upper deciles

کلیدواژه‌ها [English]

  • Economic Complexity
  • Energy Consumption
  • Energy Price
  • Iran
  • Quantile Regression
  1. آذربایجانی، کریم؛ شریفی، علیمراد و شجاعی، عبدالناصر. (1387). تخمین تابع تقاضای گاز طبیعی در بخش صنعت کشور. مجله توسعه و سرمایه، شماره ۱، صفحات 70-47.

    صدرزاده مقدم، سعید؛ صادقی، زین‌العابدین و قدس الهی، احمد. (1392). تخمین تابع تقاضای انرژی و کشش قیمتی و جانشینی نهاده‌ها در بخش صنعت: رگرسیون معادلات به ظاهر نامرتبط. پژوهشنامه اقتصاد انرژی ایران، دوره 2، صفحات 127-107.

    عزیزی، زهرا. (1397). پویایی‌های نامتقارن تقاضای انرژی در ایران با توجه به دوران رونق و رکود اقتصادی، پژوهشنامه اقتصاد انرژی ایران، 7(28)، صفحات 132-105.

    عزیزی، زهرا. (1398). اثر آستانه‌ای پیچیدگی اقتصادی بر مصرف انرژی در ایران با استفاده از یک الگوی رگرسیون انتقال ملایم. فصلنامه مطالعات اقتصادی کاربردی ایران، 8(32)، صفحات 127-103.‎

    عزیزی، زهرا. (1398). بررسی نحوه اثرگذاری پیچیدگی اقتصادی بر مصرف انرژی در بخش صنعت. فصلنامه برنامه‌ریزی و بودجه، 24(1)، صفحات 24-3.‎

    Alvarado, R., Tillaguango, B., Dagar, V., Ahmad, M., Işık, C., Méndez, P. and Toledo, E. (2021). Ecological footprint, economic complexity, and natural resources rents in Latin America: Empirical evidence using quantile regressions. Journal of Cleaner Production, 128585.

    Azerbaijani, K., Sharifi, A., Shojaee, A. (2008). The Estimation of Compressed Natural Gas (CNG) Application Function in Industry Section of Country. Journal of Development and Capital, 1(1), 47-70. [In Persian]

    Azizi, Z. (2018). Asymmetric Dynamics of Energy Demand in Iran with respect to Economic Boom and Recession. Iranian Energy Economics, 7(28), 105-132. [In Persian]

    Azizi, Z. (2019). The effect of economic complexity on energy consumption in the industrial sector. The Journal of Planning and Budgeting, 24(1), 3-24. [In Persian]

    Azizi, Z. (2020). The Threshold Effect of Economic Complexity on Energy Consumption in Iran Using Smooth Transition Regression Model. Journal of Applied Economics Studies in Iran, 8(32), 103-127. [In Persian]

    Bakaloglou, S. and Charlier, D. (2019). Energy consumption in the French residential sector: How much do individual preferences matter? The Energy Journal, 40(3).

    Bera, A. K., Galvao, A. F., Montes-Rojas, G. V and Park, S. Y. (2016). Asymmetric laplace regression: Maximum likelihood, maximum entropy, and quantile regression. Journal of Econometric Methods, 5(1), 79-101.

    Binder, M. and Coad, A. (2011). From Average Joe’s happiness to Miserable Jane and Cheerful John: using quantile regressions to analyze the full subjective well-being distribution. Journal of Economic Behavior & Organization, 79(3), 275-290.

    Can, M., Ahmad, M. and Khan, Z. (2021). The impact of export composition on environment and energy demand: Evidence from newly industrialized countries. Environmental Science and Pollution Research, 1-14.

    Churchill, S. A., Inekwe, J. and Ivanovski, K. (2021). R&D expenditure and energy consumption in OECD nations. Energy economics, 100, 105376.

    Damette, O., Delacote, P. and Del Lo, G. (2018). Households’ energy consumption and transition toward cleaner energy sources. Energy Policy, 113, 751-764.

    Fang, J., Gozgor, G., Mahalik, M. K., Padhan, H. and Xu, R. (2021). The impact of economic complexity on energy demand in OECD countries. Environmental Science and Pollution Research, 1-10.

    Fang, J., Gozgor, G., Mahalik, M. K., Padhan, H. and Xu, R. (2021). The impact of economic complexity on energy demand in OECD countries. Environmental Science and Pollution Research, 28, 33771-33780

    Fei, Q. and Rasiah, R. (2014). Electricity consumption, technological innovation, economic growth and energy prices: does energy export dependency and development levels matter? Energy Procedia, 61, 1142-1145.

    Godil, D. I., Sharif, A., Ali, M. I., Ozturk, I. and Usman, R. (2021). The role of financial development, R & D expenditure, globalization and institutional quality in energy consumption in India: New evidence from the QARDL approach. Journal of environmental management, 285, 112208.

    Gozgor, G., Lau, C. K. M. and Lu, Z. (2018). Energy consumption and economic growth: new evidence from the OECD countries. Energy, 153, 27-34. https://doi.org/10.1016/j.energy.2018.03.158

    Gozgor, G., Mahalik, M. K., Demir, E. and Padhan, H. (2020). The impact of economic globalization on renewable energy in the OECD countries. Energy Policy, 139, 111365.

    Han, H. and Wu, S. (2018). Rural residential energy transition and energy consumption intensity in China. Energy Economics, 74, 523-534.

    Hao, L., Naiman, D.Q. and Naiman, D. Q., 2007. Quantile regression (No. 149). Sage.

    Hausmann, R., Hidalgo, C. A., Bustos, S., Coscia, M. and Simoes, A. (2014). The atlas of economic complexity: Mapping paths to prosperity. Mit Press.

    Heckman, J. J. (1979). Sample selection bias as a specification error. Econometrica: Journal of the Econometric Society, 153-161.

    Hidalgo, C. A. and Hausmann, R. (2009). The building blocks of economic complexity. Proceedings of the National Academy of Sciences, 106(26), 10570-10575.

    Jacobsen, D. M. (2000). Examining technology adoption patterns by faculty in higher education. Proceedings of ACEC2000: Learning Technologies, Teaching and the Future of Schools, 6-9.

    Jacobsen, H. K. (2001). Technological progress and long-term energy demand—a survey of recent approaches and a Danish case. Energy Policy, 29(2), 147-157.

    Jin, L., Duan, K. and Tang, X. (2018). What is the relationship between technological innovation and energy consumption? Empirical analysis based on provincial panel data from China. Sustainability, 10(1), 145.

    Jorgenson, D. W. and Fraumeni, B. M. (1981). Relative Prices and Technical Change: Modeling and Measuring Natural Resources Substitution. E. Berndt y B. Field (Eds.).

    Khan, G., Ahmed, A. M. and Kiani, A. (2016). Dynamics of energy consumption, technological innovations and economic growth in Pakistan. Journal of Business & Economics, 8(1), 1.

    Khan, M. A. and Ahmad, U. (2008). Energy demand in Pakistan: a disaggregate analysis. The Pakistan Development Review, 437-455.

    Koenker, R. (2004). Quantile regression for longitudinal data. Journal of Multivariate Analysis, 91(1), 74-89.

    Koenker, R. and Bassett, G. (1982). Tests of linear hypotheses and l" 1 estimation. Econometrica: Journal of the Econometric Society, 1577-1583.

    Koenker, R. and Hallock, K. F. (2001). Quantile regression. Journal of Economic Perspectives, 15(4), 143-156.

    Koenker, R. W. and d’Orey, V. (1987). Algorithm AS 229: Computing regression quantiles. Applied Statistics, 383-393.

    Labandeira, X., Labeaga, J. M. and López-Otero, X. (2017). A meta-analysis on the price elasticity of energy demand. Energy Policy, 102, 549-568.

    Ladu, M. G. and Meleddu, M. (2014). Is there any relationship between energy and TFP (total factor productivity)? A panel cointegration approach for Italian regions. Energy, 75, 560-567.

    Laverde-Rojas, H., Guevara-Fletcher, D. A. and Camacho-Murillo, A. (2021). Economic growth, economic complexity, and carbon dioxide emissions: The case of Colombia. Heliyon, e07188.

    Levin, J. (2001). Globalizing the community college: Strategies for change in the twenty-first century. Springer.

    Li, K. and Lin, B. (2014). The nonlinear impacts of industrial structure on China’s energy intensity. Energy, 69, 258-265.

    Lin, B. and Du, K. (2015). Measuring energy rebound effect in the Chinese economy: an economic accounting approach. Energy Economics, 50, 96-104.

    Liu, H., Liang, S. and Cui, Q. (2021). The Nexus between Economic Complexity and Energy Consumption under the Context of Sustainable Environment: Evidence from the LMC Countries. International Journal of Environmental Research and Public Health, 18(1), 124.

    Murad, M. W., Alam, M. M., Noman, A. H. M. and Ozturk, I. (2019). Dynamics of technological innovation, energy consumption, energy price and economic growth in Denmark. Environmental Progress & Sustainable Energy, 38(1), 22-29.

    Nawaz, K., Lahiani, A. and Roubaud, D. (2020). Do natural resources determine energy consumption in Pakistan? The importance of quantile asymmetries. The Quarterly Review of Economics and Finance

    Neagu, O. and Teodoru, M. C. (2019). The relationship between economic complexity, energy consumption structure and greenhouse gas emission: Heterogeneous panel evidence from the EU countries. Sustainability, 11(2), 497.

    Nesbakken, R. (1999). Price sensitivity of residential energy consumption in Norway. Energy Economics, 21(6), 493-515.

    Newey, W. K. and Powell, J. L. (1987). Asymmetric least squares estimation and testing. Econometrica: Journal of the Econometric Society, 819-847.

    Nie, H., Kemp, R., Xu, J., Vasseur, V. and Fan, Y. (2018). Drivers of urban and rural residential energy consumption in China from the perspectives of climate and economic effects. Journal of Cleaner Production, 172, 2954-2963.

    Oryani, B., Koo, Y., Rezania, S., Shafiee, A., Khan, M. K. and Mahdavian, S. M. (2021). The Role of Electricity Mix and Transportation Sector in Designing a Green-Growth Strategy in Iran. Energy, 121178.

    Paramati, S. R., Alam, M. S., Hammoudeh, S. and Hafeez, K. (2020). Long‐ run relationship between R&D investment and environmental sustainability: Evidence from the European Union member countries. International Journal of Finance & Economics.

    Pata, U. K. (2021). Renewable and non-renewable energy consumption, economic complexity, CO 2 emissions, and ecological footprint in the USA: testing the EKC hypothesis with a structural break. Environmental Science and PollutionResearch, 28(1), 846-861.

    Rafique, M. Z., Doğan, B., Husain, S., Huang, S. and Shahzad, U. (2021). Role of economic complexity to induce renewable energy: contextual evidence from G7 and E7 countries. International Journal of Green Energy, 18(7), 745-754.

    Sadorsky, P. (2009). Renewable energy consumption, CO2 emissions, and oil prices in the G7 countries. Energy Economics, 31(3), 456-462.

    Sadrzadeh Mogadam, S., Sadeghi, Z. and Quds Elahi, A. (2013). Estimated Energy Demand Function and Substitution Elasticity between Inputs in Industry Section: Seemingly Unrelated Regression Estimation. Iranian Energy Economics, 2(6), 107-127. [In Persian]

    Shahzad, U., Fareed, Z., Shahzad, F. and Shahzad, K. (2021). Investigating the nexus between economic complexity, energy consumption and ecological footprint for the United States: New insights from quantile methods. Journal of Cleaner Production, 279, 123806.

    Uzar, U. (2020). Political economy of renewable energy: Does institutional quality make a difference in renewable energy consumption? Renewable Energy, 155, 591-603.

    1. S. Jevons. (1865) 1866. Chapters 1 and 2 in The coal question: An enquiry concerning the progress of the nation, and the probable exhaustion of our coal-mines, 2nd ed., 1-6, 15-17, 28-35. London: Macmillan

    Wang, Q., Su, M., Li, R. and Ponce, P. (2019). The effects of energy prices, urbanization, and economic growth on energy consumption per capita in 186 countries. Journal of Cleaner Production, 225, 1017-1032.

    Yuan, C., Liu, S. and Wu, J. (2009). Research on energy-saving effect of technological progress based on Cobb-Douglas production function. Energy Policy, 37(8), 2842-2846.