نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه اقتصاد اسلامی، دانشگاه علامه طباطبایی، تهران، ایران

2 فارغ‌التحصیل دوره دکتری، دانشگاه علامه طباطبایی، تهران، ایران

چکیده

امروزه درنتیجه افزایش جمعیت در سراسر جهان تقاضای انرژی افزایش یافته است. با توجه به محدود بودن منابع انرژی فسیلی و مشکلات ناشی از انتشار گازهای گلخانه‌ای، توجه بیش از پیش به انرژی‌های تجدیدپذیر ضرورت دارد، زیرا از این طریق می‌توان به اهداف توسعه پایدار دست یافت. بنابراین هدف پژوهش حاضر، ارزیابی مناسب از عملکرد تکنولوژی‌های انرژی‌های تجدیدپذیر و نیز بررسی روابط بین انرژی‌های تجدیدپذیر، انتشار دی‌اکسید کربن و توسعه پایدار در ایران و مقایسه با انرژی‌های تجدیدناپذیر است. به منظور رتبه‌بندی حامل‌های انرژی تجدیدپذیر و شناسایی بهترین نوع آنها جهت تولید برق در ایران از یک مدل تصمیم‌گیری چندمعیاره استفاده شده است. در این راستا با انجام مطالعات کتابخانه‌ای و جمع‌آوری نظرات خبرگان، مجموعه‌ای از معیارها در قالب چهار بعد فنی، اقتصادی، اجتماعی و زیست‌محیطی تعیین گردیده است. در ادامه با استفاده از رویکرد VIKOR به اولویت‌بندی انرژی‌های تجدیدپذیر متشکل از انرژی‌های بادی، برق آبی، خورشیدی، زیست توده و زمین گرمایی پرداخته شده است. یافته‌های پژوهش بیانگر اولویت بالای انرژی بادی بوده و انرژی‌های خورشیدی، برق آبی، زمین گرمایی و زیست توده در رتبه‌های بعدی جای می‌گیرند. نتایج حاکی از آن است که تأثیر ایجاد تکانه مثبت در سهم انرژی‌های تجدیدپذیر و تجدیدناپذیر بر توسعه پایدار در ایران مثبت است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Prioritizing the Interrelationships of the Share of Renewable Energy Sources in Sustainable Development

نویسندگان [English]

  • Amrollah Amini 1
  • Hassan Amoozadeh Khalili 2

1 Assistant Professor, Department of Islamic Economics, Allameh Tabataba'i University, Tehran, Iran

2 Ph.D., Allameh Tabataba'i University, Tehran, Iran

چکیده [English]

Today, energy demand has increased as a result of population growth around the world. Due to the limited fossil energy resources and the problems caused by greenhouse gas emissions, it is necessary to pay more attention to renewable energy, because in this way, the goals of sustainable development can be achieved. Therefore, the purpose of this study is to properly evaluate the performance of renewable energy technologies and also to investigate the relationship between renewable energy, carbon dioxide emissions, and sustainable development in Iran and compare it with non-renewable energy. In order to rank renewable energy carriers and identify the best type of them for electricity generation in Iran, a multi-criteria decision model has been used. In this regard, by conducting library studies and collecting the opinions of experts, a set of criteria in the form of four technical, economic, social, and environmental dimensions has been determined. Then, using the VIKOR approach, renewable energies consisting of wind, hydropower, solar, biomass, and geothermal energies are discussed. Findings indicate a high priority of wind energy and solar, hydropower, geothermal and biomass are in the next ranks. The results indicate that the effect of positive momentum on the share of renewable and non-renewable energy on sustainable development in Iran is positive.

کلیدواژه‌ها [English]

  • Renewable Energy
  • Sustainable Development
  • Prioritization
  • VIKOR
بریمانی، مهدی و کعبی‌نژادیان، عبدالرزاق. (1393). انرژی‌های تجدیدپذیر و توسعه پایدار در ایران. دو فصلنامه انرژی‌های تجدیدپذیر و نو، 1، 26-21.
تکلیف، عاطفه؛ محمدی، تیمور و بختیار، محسن. (1395). گسترش انرژی‌های تجدیدپذیر و نقش آن در توسعه آینده صنعت نیروگاهی ایران. فصلنامه پژوهش‌های رشد و توسعه اقتصادی، 7(25)، 143-158.
شعربافیان، نیلوفر. (1387). برآورد پتانسیل فنی و اقتصادی انرژی خورشیدی حرارتی در ایران: راهکاری برای توسعه پایدار انرژی خورشیدی.‎ مطالعات اقتصاد انرژی، 15، 54-35.
صادقی، حسین و خاکسارآستانه، سمانه. (1393). ارائه یک الگوی بهینه توسعه انرژی‌های تجدیدپذیر در ایران با استفاده از رویکرد بهینه‌یابی استوار. پژوهشنامه اقتصاد انرژی ایران، 3، 195-159.‎
ممبینی، حسین و یزدانی چمزینی، عبدالرضا (1393). ارائه یک روش جدید برای اولویت‌بندی استراتژی‌های سرمایه‌گذاری در بخش خصوصی ایران.‎ دانش سرمایه‌گذاری، 11، 289-259.
Ahmad, S. and Tahar, R. M. (2014). Selection of renewable energy sources for sustainable development of electricity generation system using analytic hierarchy process: A case of Malaysia. Renewable energy, Vol. 63, pp. 458-466.
Al-Mulali, U., Saboori, B., and Ozturk, I. (2015). Investigating the environmental Kuznets curve hypothesis in Vietnam. Energy Policy, Vol. 76, pp. 123-131.
Amer, M. and Daim, T. U. (2011). Selection of renewable energy technologies for a developing county: a case of Pakistan. Energy for Sustainable Development, Vol. 15(4), pp. 420-435.
Amponsah, N. Y., Troldborg, M., Kington, B., Aalders, I. and Hough, R. L. (2014). Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations. Renewable and SustainableEnergy Reviews, Vol. 39, pp. 461-475.
Amri, F. (2016). The relationship amongst energy consumption, foreign direct investment and output in developed and developing countries. Renewable and Sustainable Energy Reviews, Vol. 64, pp. 694-702.
Amri, F. 2016. The relationship amongst energy consumption, foreign direct investment and output in developed and developing Countries. Renewable and Sustainable Energy Reviews, Vol. 64, pp. 694-702.
Antonakakis, N., Chatziantoniou, I. and Filis, G. (2017). Energy consumption, CO2 emissions, and economic growth: an ethical dilemma. Renewable and Sustainable Energy Reviews, Vol. 68, pp. 808-824.
Apergis, N. and Payne, J. E. (2009). Energy consumption and economic growth: evidence from the Commonwealth of Independent States. Energy Economics, Vol. 31(5), pp. 641-647.
Apergis, N. and Payne, J. E. (2012). Renewable and non-renewable energy consumption-growth nexus: Evidence from a panel error correction model. Energy Economics, Vol. 34(3), pp. 733-738.
Asumadu-Sarkodie, S. and Owusu, P. A. (2016). Carbon dioxide emissions, GDP, energy use, and population growth: a multivariate and causality analysis for Ghana, 1971–2013. Environmental Science and Pollution Research, Vol. 23(13), pp. 13508-13520.
Atmaca, E. and Basar, H. B. (2012). Evaluation of power plants in Turkey using Analytic Network Process (ANP). Energy, Vol.44(1), pp.555-563.
Banos, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A. and Gómez, J. (2011). Optimizationmethods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Reviews, Vol. 15(4), pp. 1753-1766.
Baris, K. and Kucukali, S. (2012). Availibility of renewable energy sources in Turkey: Current situation, potential, government policies and the EU perspective. Energy Policy, Vol. 42, pp. 377-391.
Bélaïd, F. and Youssef, M. (2017). Environmental degradation, renewable and non-renewable electricity consumption, and economic growth: Assessing the evidence from Algeria. Energy Policy, Vol. 102, pp. 277-287.
ENVI. (2011). Impact of Shale gas and shale oil extraction on the environment and on human health. European Parliament Committees.
Jebaraj, S., & Iniyan, S. (2006). A review of energy models. Renewable and Sustainable Energy Reviews, 10(4), 281-311.
Khatami Firouzabadi, A., & Ghazimatin, E. (2013). Application of preference ranking organization method for enrichment evaluation method in energy planning-regional level. Iranian Journal of Fuzzy Systems, 10(4), 67-81.
Koop, G. M. (2013). Forecasting with medium and large Bayesian VARs. Journal of Applied Econometrics, 28(2), 177-203.
Lange, K. (2010). Advanced Optimization Topics. In Numerical Analysis for Statisticians (297-332). Springer New York.
Li, G. and Fang, C. (2014). Global mapping and estimation of ecosystem services values and gross domesticproduct: A spatially explicit integration of national ‘green GDP’accounting. Ecological Indicators, Vol. 46, pp. 293-314.
Mathews, A. P. (2014). Renewable energy technologies: panacea for world energy security and climate change?. Procedia Computer Science, Vol. 32, pp. 731-737.
Mathiesen, B. V., Lund, H. and Karlsson, K. (2011). 100% Renewable energy systems, climate mitigation and economic growth. Applied Energy, Vol. 88(2), pp. 488-501.
Mezghani, I. and Haddad, H. B. (2017). Energy consumption and economic growth: An empirical study of the electricity consumption in Saudi Arabia. Renewable and Sustainable Energy Reviews, Vol. 75, pp. 145-156.
Payne, J. E. (2012). Renewable and non-renewable energy consumption-growth nexus: evidence from apanel error correction model, Energy Economics, Vol. 34, pp. 733-738.
Sabour, S. A. A. (2005). Quantifying the external cost of oil consumption within the context of sustainable development. Energy policy, Vol. 33(6), pp. 809-813.
Shilpa, C., Zabiullah, S., & Venugopal, N. (2015). Implementation of solar power converter for DC distribution by incremental conductance controller. International Journal of Engineering Technology, Management and Applied Sciences, 3, 322-328.
Walker, W. E., Harremoës, P., Rotmans, J., van der Sluijs, J. P., van Asselt, M. B., Janssen, P., & Krayer von Krauss, M. P. (2003). Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support. Integrated assessment, 4(1), 5-17.
Wang, Z., and Yang, L. (2015). Delinking indicators on regional industry development and carbon emissions: Beijing–Tianjin–Hebei economic band case. Ecological Indicators, Vol. 48, pp. 41-48.
Yu, X., & Qu, H. (2013). The role of China's renewable powers against climate change during the 12th Five-Year and until 2020. Renewable and Sustainable Energy Reviews, 22, 401-409.
Zhou, W., Lou, C., Li, Z., Lu, L., & Yang, H. (2010). Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Applied Energy, 87(2), 380-38        
 
استناد به این مقاله: امینی، امراله؛ عموزاده خلیلی، حسن. (1400). الویت‌بندی روابط متقابل سهم منابع انرژی تجدیدپذیر در توسعه پایدار، پژوهشنامه اقتصاد انرژی ایران، 38 (10)، 65-95.
 Iranian Energy Economics is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.