نوع مقاله : مقاله پژوهشی

نویسنده

دانشیار اقتصاد مالی و انرژی، دانشگاه مازندران، مازندران، ایران

چکیده

نقش سیستم مالی  جهت تأمین نیاز سرمایه‌گذاری کلان برای توسعه تکنولوژی انرژی‌های تجدیدپذیر  جهت کاهش گازهای گلخانه‌ای و امنیت انرژی بسیار با اهمیت است. رابطه بین توسعه مالی و توسعه تکنولوژی انرژی‌های تجدیدپذیر تحت تأثیر ویژگی‌های مختلف و ساختار اقتصادی کشورها قرار دارد. تأثیر فراوانی منابع طبیعی بر رابطه بین توسعه مالی و توسعه تکنولوژی انرژی‌های تجدیدپذیر بر اساس میزان توسعه یافتگی سیستم مالی کشورها می‌تواند متفاوت باشد. در پژوهش حاضر، تأثیرگذاری توسعه مالی بر توسعه تکنولوژی انرژی­های تجدیدپذیر در دو گروه مختلف از کشورهای صاحب منابع طبیعی ( ۲۰ کشور توسعه‌یافته با سیستم مالی توسعه‌یافته و کمتر توسعه‌یافته ، ۲۵ کشور در حال توسعه با سیستم مالی توسعه‌یافته و کمتر توسعه‌یافته)، مورد بررسی قرار گرفته است. رابطه مذکور و عوامل مؤثر بر آن با استفاده از تخمین زن گشتاورهای تعمیم یافته دو مرحله‌ای «آرلانو و باند» و« بلوندل و باند» طی دوره زمانی 2000 تا 2021 انجام شده و صحت نتایج به دست آمده نیز با استفاده از تخمین زن‌های «حداقل مربعات معمولی پویا» و «حداقل مربعات معمولی کاملا اصلاح شده» مورد تأیید قرار گرفته است. بر اساس نتایج، توسعه مالی در تمامی کشورهای مورد بررسی تأثیر مثبت بر توسعه تکنولوژی انرژی­های تجدیدپذیر داشته است. همچنین فروانی منابع طبیعی در کشورهای توسعه‌یافتۀ صاحب منابع طبیعی نه تنها موجب کاهش ظرفیت نصب تکنولوژی انرژی­های تجدیدپذیر نشده است، بلکه در کشورهای توسعه‌یافتۀ صاحب منابع طبیعی با بازارهای مالی توسعه­یافته، موجب توسعه تکنولوژی‌های انرژی­های تجدیدپذیر شده، بنابراین فرضیه نفرین منابع در این کشورها تأیید نشده است.  پدیده نفرین منابع طبیعی در کشورهای در حال توسعه صاحب منابع طبیعی به‌ویژه با بازارهای مالی کمتر توسعه‌یافته در این دوره تأیید شده است. لذا میزان توسعه یافتگی سیستم مالی کشورهای برخوردار از منابع طبیعی یکی از مهم ترین پارامترهایی است که می‌تواند از بروز نفرین منابع در این کشورها جلوگیری کند.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Financial Development and Renewable Energy Technology Development Nexus, and the Role of Natural Resources: Developed Financial Systems vs. Less Developed Financial Systems

نویسنده [English]

  • Majid Aghaei

Associate Professor of Financial and Energy Economics at University of Mazandaran

چکیده [English]

This study investigates the impact of financial development on renewable energy technology deployment in resource-rich countries with varying levels of financial system maturity. Using panel data from 2000 to 2021, the models were estimated with the Generalized Method of Moments (GMM), while the robustness of results was validated through Dynamic Ordinary Least Squares (DOLS) and Fully Modified Ordinary Least Squares (FMOLS). The findings indicate that financial development positively affects renewable energy growth in all countries studied. In developed resource-rich countries, particularly those with advanced financial markets, natural resource abundance has facilitated renewable energy development, providing no evidence of the “resource curse.” In contrast, developing resource-rich countries with less developed financial systems show signs of the resource curse. These results highlight the crucial role of financial system development in transforming resource wealth into an opportunity for renewable energy advancement.
Introduction
The sharp rise in energy prices, particularly oil, over the twentieth century has brought about profound challenges and opportunities for the global economy. The heavy reliance on fossil fuels has raised serious concerns regarding energy security and environmental sustainability, prompting countries to seek alternative energy solutions. Among these, the development of renewable energy technologies has emerged as a crucial strategy to mitigate climate change and ensure long-term energy security (Bhattacharya et al., 2017; Charfeddine & Kahia, 2017). In recent years, developed economies have adopted a variety of policy instruments—such as feed-in tariffs and renewable portfolio standards—to accelerate renewable energy deployment (Kim & Park, 2016). However, despite these efforts, the contribution of renewable energy to total energy consumption remains limited, particularly in developing economies. High upfront capital costs and inadequate financial support are frequently cited as major barriers to renewable energy investment. Financial market development plays a pivotal role in mobilizing resources for renewable energy projects by facilitating access to capital and reducing investment risks. Yet, in resource-rich developing countries, the interplay between financial development and renewable energy expansion is complicated by the “resource abundance” phenomenon. While natural resource wealth has the potential to finance large-scale renewable energy investments, empirical evidence indicates that it can also distort economic structures and hinder sustainable development (Nili & Ratad, 2007; Moradbeigi & Law, 2016). Countries such as Iran and the Gulf Cooperation Council (GCC) states, despite abundant oil and gas revenues, have made limited progress in renewable energy adoption.
This study aims to explore how financial development influences renewable energy growth in resource-rich economies, considering the dual role of natural resource abundance. By distinguishing between countries with varying levels of financial system development, this research seeks to provide new insights into the mechanisms through which resource wealth and financial markets interact to shape renewable energy transitions.
Methods and Material
Drawing on theoretical foundations and previous studies (e.g., Moradbeigi & Law, 2016; Nili & Rastad, 2007; Kim & Park, 2016), this study employs a dynamic model to investigate the impact of financial development on the deployment of renewable energy technologies, while accounting for the role of natural resource abundance and the level of financial system development across countries. The general model is specified as follows:
 
In this model,  represents the installed capacity of renewable energy technologies in country i at time t. The vector  includes explanatory variables such as financial development (FD), natural resource rents (NRR), real GDP per capita, population (POP), consumer price index (CPI), and greenhouse gas emissions (GHG). The interaction term FD∗NRR is incorporated to examine the indirect effect of resource abundance on renewable energy development through its influence on financial development.
Given the dynamic nature of the model, the estimation is conducted using the Generalized Method of Moments (GMM), as proposed by Arellano and Bond (1991) and further refined by Arellano and Bover (1995) and Blundell and Bond (1998). The sample comprises resource-rich developed and developing countries over the period 2000–2021. Countries are classified into two groups—those with developed and less-developed financial systems—based on the financial development index provided by the International Monetary Fund (IMF). Furthermore, the categorization of developed and developing economies follows the World Bank classification. Only countries with significant natural resource rents are included in the sample (Sachs & Warner, 2001; Moradbeigi & Law, 2016).
 
 
Results and Discussion
The empirical findings, based on dynamic panel GMM estimations, reveal significant insights into the relationship between financial development and the deployment of renewable energy technologies (RETs) in resource-rich countries. Diagnostic tests, including the Sargan test for instrument validity and Arellano-Bond serial correlation tests, confirm the robustness and reliability of the model estimations. In resource-rich developed countries, financial development exhibits a strong and positive impact on both annual and cumulative renewable energy capacities, regardless of the maturity level of their financial markets. This highlights the critical role of well-functioning financial systems in mobilizing investments for RETs. Furthermore, the positive and significant coefficients of natural resource rents (NRR) contradict the resource curse hypothesis in these countries, suggesting that revenues from natural resources have been effectively utilized to promote clean energy transitions. The interaction term (FD*NRR) is also significant in countries with highly developed financial systems, indicating that financial development amplifies the positive effect of resource abundance on renewable energy deployment.
In contrast, the results for resource-rich developing countries present a more nuanced picture. While financial development positively influences RET expansion in countries with advanced financial markets, its effect is statistically insignificant in those with underdeveloped financial systems. Moreover, the negative and significant coefficient of NRR, alongside the interaction term (FD*NRR), confirms the existence of the resource curse in developing economies with weak financial infrastructures. This suggests that inadequate financial systems hinder the ability of these countries to channel resource rents towards sustainable energy investments. Control variables such as GDP per capita and CPI show consistent positive effects on RET deployment across most models, underscoring the importance of economic development and energy price signals in driving renewable energy adoption. Conversely, greenhouse gas emissions are negatively associated with RETs, supporting the notion that increased fossil fuel dependency hampers clean energy progress.
Robustness checks using FMOLS and DOLS estimators corroborate the main GMM results, further strengthening the study’s findings. These results collectively emphasize the pivotal role of financial development in transforming natural resource wealth into a driver for renewable energy growth, particularly in countries with efficient financial systems.
Conclusion
This study examined the role of natural resource abundance (resource rents) in shaping the relationship between financial development and renewable energy technology (RET) deployment in resource-rich developed and developing countries, with particular attention to the level of financial market development during the period 2000–2021. The findings reveal that financial development positively influences RET growth in both groups of countries. However, in resource-rich developed countries, this effect is significant regardless of the level of financial market development, whereas in developing countries, the impact of financial development on RET is only significant in those with advanced financial markets. This underscores the critical role of efficient financial systems in mobilizing resources and reducing investment risks in renewable energy projects.
Moreover, the positive and significant effect of resource rents in developed countries rejects the “resource curse” hypothesis, highlighting the capacity of advanced financial markets to channel resource revenues toward RET advancement. Conversely, in resource-rich developing countries with underdeveloped financial markets, resource rents negatively affect RET, confirming the existence of the “resource curse.”
Based on these results, it is recommended that countries with less developed financial systems strengthen credit markets, support private sector investments, create financial incentives, and enhance institutional frameworks to facilitate renewable energy technology deployment. Additionally, policies aimed at fostering sustainable economic growth, ensuring fair energy pricing, and implementing environmental strategies can play a vital role in reducing dependence on fossil fuels and promoting RET expansion.
Acknowledgments
The author would like to express their sincere gratitude to the anonymous reviewers for their valuable comments and constructive suggestions, which have significantly improved the quality of this study.
Keywords: Renewable Energy Technologies (RET), Financial Development, Natural Resource Rent, GMM Estimator

کلیدواژه‌ها [English]

  • Associate Professor of Financial and Energy Economics at University of Mazandaran
آقایی، مجید و رضا قلی‌زاد، مهدیه.(۱۳۹۶). بررسی تأثیر عوامل بانکی و اقتصادی بر مطالبات معوق بانک‌های دولتی در بلندمدت و کوتاه‌مدت. فصلنامه تحقیقات اقتصادی، ۵۲(۳)،  ۴۹۹-۵۲۶. doi: 10.22059/jte.2017.63302
آقایی، مجید، رضا قلی‌زاده، مهدیه و عبدی، یونس. (۱۳۹۸). توسعه مالی و توسعه تکنولوژی انرژی‌های تجدیدپذیر در بخش‌های مختلف: کاربرد مدل پانل توبی. فصلنامه تحقیقات اقتصادی، ۵۴(۲)، ۲۵۳-۲۸۴. doi: 10.22059/jte.2019.71284
آقایی، مجید و سلمان، محمد. (۱۴۰۳). نقش ریسک سیستماتیک در رابطه توسعه مالی و توسعه تکنولوژی انرژی‌های تجدیدپذیر: مقایسه کشورهای توسعه‌یافته و در حال توسعه تولیدکننده نفت. فصلنامه تحقیقات اقتصاد کلان، ۱۸(۳۹)، doi: 10.22080/iejm.2024.26479.2027
References
Abdul, J. Mete, F. (2011). The impact of growth, energy and financial development on the environment in China: A congregation analysis. Journal of Energy Economics. 33 (2), 284-291. https://doi.org/10.1016/j.eneco.2010.10.003
Acemoghlu, D., Johnson, S. (2005). Unbundling institutions. Journal of Political Economy.113(5), 949-995. https://doi.org/10.1086/432166
Aghaei, M., & Rezagholizadeh2, M. (2017). Investigation the Long Run and Short Run Impact of Banking and Economic Factors on Public Bank’s None-Performing Loan. Journal of Economic Research (Tahghighat- E- Eghtesadi), 52(3), 499-526. doi: 10.22059/jte.2017.63302 [In Persian]
Aghaei, M., rezagholizadeh, M., & abdi, Y. (2019). Financial Development and Renewable Energy Technology Development in Different Sectors: Application of Panel Tobit Model. Journal of Economic Research (Tahghighat- E- Eghtesadi), 54(2), 253-284. doi: 10.22059/jte.2019.71284 [In Persian]
Aghaei, M., & salman, M. (2024). The Role of Systematic Risk in the Financial Development and Renewable Energy Technology Development Nexus: A Comparison of Developing and Developed Oil-Producing Countries. Macroeconomics Research Letter, 18(39), -. doi: 10.22080/iejm.2024.26479.2027 [In Persian]
Ali, Q., Khan, M. T. I., & Khan, M. N. I. (2018). Dynamics between financial development, tourism, sanitation, renewable energy, trade and total reserves in 19 Asia cooperation dialogue members. Journal of cleaner production179, 114-131.
https://doi.org/10.1016/j.jclepro.2018.01.066
Anton, S. Afloarei, A. (2020). The effect of financial development on renewable energy consumption. A panel data approach. Journal of renewable energy. 147, 330-338. https://doi.org/10.1016/j.renene.2019.09.005
Arellano, M., & Bond, S. (1991). Some tests of specification for panel Carlo application to data: evidence and an employment equation. The Review of Economic Studies58(2), 277-297. https://doi.org/10.2307/2297968
Arellano, M., & Bover, O. (1995). Another look at the instrumental variable estimation of error-components models. Journal of econometrics68(1), 29-51.
Arndt, C., Arent, D., Hartley, F., Merven, B., & Mondal, A. H. (2019). Faster than you think: Renewable energy and developing countries. Annual Review of Resource Economics11, 149-168. doi:10.1146/annurev-resource-100518-093759
Auty, R.M. (1993). Sustaining Development in Mineral Economies: The Resource Curse Thesis. Routledge, London.
Badeeb, R. A., Lean, H. H., & Smyth, R. (2016). Oil curse and finance–growth nexus in Malaysia: The role of investment. Energy Economics57, 154-165. https://doi.org/10.1016/j.eneco.2016.04.020
Baltagi, B. H., Song, S. H., & Jung, B. C. (2001). The unbalanced nested error component regression model. Journal of Econometrics101(2), 357-381. https://doi.org/10.1016/S0304-4076(00)00089-0
Bhattacharya, M., Churchill, S. A., & Paramati, S. R. (2017). The dynamic impact of renewable energy and institutions on economic output and CO2 emissions across regions. Renewable Energy111, 157-167.
Blundell, R., & Bond, S. (2000). GMM estimation with persistent panel data: an application to production functions. Econometric reviews19(3), 321-340. https://doi.org/10.1080/07474930008800475
Bound, J., Jaeger, D. A., & Baker, R. M. (1995). Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak. Journal of the American statistical association90(430), 443-450.
Brunnschweiler, C. N. (2010). Finance for renewable energy: an empirical analysis of developing and transition economies. Environment and Development Economics15(03), 241-274 doi:10.2139/ssrn.1462207
Brown, J. Farrazi, S. Peterson, B. (2009). Financing innovation and economic growth: cash flow, external equity and 1990s R&D boom. Journal of Finance. 64 (1), 151-185. https://doi.org/10.1111/j.1540-6261.2008.01431.x
Cardenas, L. M., Franco, C. J., & Dyner, I. (2016). Assessing emissions–mitigation energy policy under integrated supply and demand analysis: the Colombian case. Journal of Cleaner Production112, 3759-3773.
Chang, S. C. (2015). Effects of financial development and income on energy consumption. Int. Rev. Econ. Financ. 35, 28-44.
Charfeddine, L., & Kahia, M. (2019). Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: a panel vector autoregressive (PVAR) analysis. Renewable energy139, 198-213.
Chen, P. Y., Chen, S. T., Hsu, C. S., & Chen, C. C. (2016). Modeling the global relationships among economic growth, energy consumption and CO2 emissions. Renewable and Sustainable Energy Reviews65, 420-431. https://doi.org/10.1016/j.rser.2016.06.074
Diamond, D. (1984). Financial intermediation and delegated monitoring. The review of economic studies. 51 (3), 393-414.
Dogan, E., & Seker, F. (2016). The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries. Renewable and Sustainable Energy Reviews60, 1074-1085.
Dong, C. G. (2012). Feed-in tariff vs. Renewable portfolio standard: An empirical test of their relative effectiveness in promoting wind capacity development. Energy policy, 42, 472-485.
DOI: 10.1016/j.enpol.2011.12.014
Fangmin, L., & Jun, W. (2011). Financial system and renewable energy development: analysis based on different types of renewable energy situation. Energy Procedia, 5, 829-833.
Fei, L., Dong, S., Xue, L., Liang, Q., & Yang, W. (2011). Energy consumption-economic growth relationship and carbon dioxide emissions in China. Energy policy39(2), 568-574.
Gaies, B., Kaabia, O., Ayadi, R., Guesmi, K., & Abid, I. (2019). Financial development and energy consumption: Is the MENA region different? Energy Policy135, 111000.
Green wood, J. Jovanovic,B. (1990). Financial deployment, growth and distribution of income. Journal of political economy. 98 (5, part 1), 1076-1107, B. (1990). Financial deployment, growth and distribution of income. Journal of political economy. 98 (5, part 1), 1076-1107. https://doi.org/10.1086/261720
Grossman, S. (1976). On the efficiency of competitive stock markets where trades have divers’ information. The Journal of Finance, 31(2), 573-585.https://doi.org/10.2307/2326627
Hadri, K. (2000). Testing for stationarity in heterogeneous panel data. The Econometrics Journal3(2), 148-161.https://doi.org/10.1111/1368-423X.00043
He, L. Lin, R. Zhang, z. Wang, D. Xia, Y. (2019). Can green financial development promote renewable energy investment efficiency? A consideration of bank credit. Journal of renewable energy. 143, (974-984).https://doi.org/10.1016/j.renene.2019.05.059
He, L. Zhang, L. Zhong, Zh. Wang, D. Wang, F.(2019). Green credit, renewable energy investment and green economy development: Empirical analysis based on 150 listed companies of China. Journal of Cleaner Production. 208, 363-372.
Henningsen, A., & Henningsen, G. (2019). Analysis of panel data using R. In Panel Data Econometrics (pp. 345-396).
Hsu, P.-H., Tian, X., & Xu, Y. (2014). Financial development and innovation: Cross-country evidence. Journal of Financial Economics112(1), 116–135.https://doi.org/10.1016/j.jfineco.2013.12.002
IEA (International Energy Agency). (2014). World energy investment outlook 2014 special report. IEA publication.
IFC (International Finance Corporation), 2011. Climate finance: Engaging the Private Sector. IFC publication.
Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of econometrics115(1), 53-74.
Ji, Q. Zhang, D. (2019). How much does financial development contribute to renewable energy growth and upgrading of energy structure in China? Journal of Energy Policy. 128, 114-124.
Kao, C., & Chiang, M. H. (2001). On the estimation and inference of a cointegrated regression in panel data. In Nonstationary panels, panel cointegration, and dynamic panels. Adv. Econ. 15, 179–222
Khan, M. T. I., Yaseen, M. R., & Ali, Q. (2019). Nexus between financial development, tourism, renewable energy, and greenhouse gas emission in high-income countries: a continent-wise analysis. Energy Economics83, 293-310.
Kim, J. Park, K. (2016). Financial development and deployment of renewable energy technologies. Journal of Energy Economics. 92(2), 355-390.
Kim, J. Park, K. (2018). Effect of the clean development mechanism on the deployment of renewable energy: less developed and well-developed financial markets. Journal of Energy Economics. 75, 1-13. https://doi.org/10.1016/j.eneco.2018.07.034
Kutan, A. M. &Wyzan, M. L. (2005). Explaining the real exchange rate in Kazakhstan, 1996 to 2003: Is Kazakhstan vulnerable to the Dutch disease? Economic Systems, 29(2), 242-255.
Levin, A., Lin, C. F., & Chu, C. S. J. (2002). Unit root tests in panel data: asymptotic and finite-sample properties. Journal of econometrics108(1), 1-24.
Levine, R. (1997). Financial development and economic growth: views and agenda. J. Econ. Lit. 35 (2), 688-726.
Levine, R. (2005). Chapter 12 finance and growth: Theory and evidence. In Handbook of Economic Growth (865–934).
Maddala, G. S., & Wu, S. (1999). A comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin of Economics and statistics61(S1), 631-652.
Minier, J.(2009). Opening a stock exchange. J. Dev. Econ. 90, 135-143.
Moradbeigi, M., & Law, S. H. (2016). Growth volatility and resource curse: Does financial development dampen the oil shocks? Resources Policy48, 97-103. https://doi.org/10.1016/j.resourpol.2016.02.009
Moradbeigi, M., & Law, S. H. (2017). The role of financial development in the oil-growth nexus. Resources Policy53, 164-172.
Mundaca, G. (2017). How much can CO2 emissions be reduced if fossil fuel subsidies are removed? Energy Economics64, 91-104.
Myers, S. (1984). The capital structure puzzle. J. Finance. 39 (3), 575-592.
Nili, M., & Rastad, M. (2007). Addressing the growth failure of the oil economies: The role of financial development. The Quarterly Review of Economics and Finance46(5), 726-740.
Paramati, S. Ummalla, M. Apergis, N. (2016). The effect of foreign direct investment and stock market growth on clean energy use across a panel of emerging market economies. Journal of Energy Economics. 56, 29-41.https://doi.org/10.1016/j.eneco.2016.02.008
Pata, U. K. (2018). Renewable energy consumption, urbanization, financial development, income and CO2 emissions in Turkey: testing EKC hypothesis with structural breaks. Journal of Cleaner Production187, 770-779.https://doi.org/10.1016/j.jclepro.2018.03.236
Pedroni, P. (2001). Purchasing power parity tests in cointegrated panels. Review of Economics and statistics83(4), 727-731.
Pérez, K., González-Araya, M. C., & Iriarte, A. (2017). Energy and GHG emission efficiency in the Chilean manufacturing industry: Sectoral and regional analysis by DEA and Malmquist indexes. Energy Economics66, 290-302.
Pesaran, M. H. (2004). General diagnostic tests for cross section dependence in panels. SSRN Electronic Journal. https://dx.doi.org/10.2139/ssrn.572504
Pesaran, M. H. (2007). A simple panel unit root test in the presence of cross‐section dependence. Journal of applied econometrics22(2), 265-312.
Pham, L. (2019). Does financial development matter for innovation in renewable energy? Applied Economics Letters26(21), 1756-1761. https://doi.org/10.1080/13504851.2019.1593934
Rajan, R. Zingales, L. (1998). Financial Dependence and Growth. The American Economic Review, 88(3), 559–586.
Badeeb, R. A., Lean, H. H., & Smyth, R. (2016). Oil curse and finance–growth nexus in Malaysia: The role of investment. Energy Economics57, 154-165.https://doi.org/10.1016/j.eneco.2016.04.020
Sach, J.D., Warner, A.M., (1999). The big push, natural resource. European Economic Review, 45, 827-838.
Sachs, J. D., & Warner, A. M. (2001). The curse of natural resources. European economic review45(4-6), 827-838.
Sathaye, J., Shukla, P. R., & Ravindranath, N. H. (2006). Climate change, sustainable development and India: Global and national concerns. Current science, 314-325.
Smith, L. V., Leybourne, S., Kim, T. H., & Newbold, P. (2004). More powerful panel data unit root tests with an application to mean reversion in real exchange rates. Journal of Applied Econometrics19(2), 147-170. https://doi.org/10.1002/jae.723
Tang, A. Chiara, N. Taylor, J. E. (2012). Financing renewable energy infrastructure: formulation, pricing and impact of a carbon revenue bond. Journal of Energy Policy. 45, 691-703.
Viktorija, B. Dalius, T. (2014). Financing instruments and channel for the increasing production and consumption of renewable energy: Lithuanian case. Journal of Renewable and Sustainable Energy Reviews. 38, 256-279. https://doi.org/10.1016/j.rser.2014.05.039
Westerlund, J. (2007). Testing for error correction in panel data. Oxford Bulletin of Economics and statistics69(6), 709-748. https://doi.org/10.1111/j.1468-0084.2007.00477.x
Yang, D. Chen, Zi. Yang, Y. Nie, p. (2019). Green financial policies and capital flows. Journal of Physics A. 522, 135-146. https://doi.org/10.1016/j.physa.2019.01.126
Zhang, D. Cao, H. Zou, P. (2016). Exuberance in China's renewable energy investment: rationality, capital structural and implication with firm level evidance. Journal of Energy Policy. 95, 468-478. https://doi.org/10.1016/j.enpol.2015.12.005
Zhang, S., Andrews-Speed, P., Zhao, X., & He, Y. (2013). Interactions between renewable energy policy and renewable energy industrial policy: A critical analysis of China's policy approach to renewable energies. Energy Policy62, 342-353.
Zhang, X., & Wang, Y. (2017). How to reduce household carbon emissions: A review of experience and policy design considerations. Energy Policy102, 116-124.
Zhang, Y. Li, W. Peng, J. (2015). Effect of creditor's power governance on enterprises investment efficiency-empirical evidence from China's listed enterprises. Finance. Res.07, 190-203.