نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیارگروه اقتصاد، دانشگاه ولیعصر، رفسنجان، ایران

2 کارشناس ارشد اقتصاد، دانشگاه ولیعصر، رفسنجان، ایران

چکیده

با توجه به اهمیت قیمت نفت، پیش‌بینی صحیح قیمت سبد نفت خام کشورهای عضو اوپک می‌تواند نقش به‌سزایی در ایمن‌سازی اقتصاد این کشورها در مقابل اثرات ناشی از این نوسانات داشته باشد. این پژوهش تلاشی در جهت معرفی یک الگوی مطلوب، به منظور مدل‌سازی و پیش‌بینی نوسانات قیمت نفت خام اوپک خواهد داشت. در این راستا از داده‌های روزانه قیمت نفت خام، طی دوره زمانی 02/01/1986 الی 13/02/2017 استفاده شده است. بر این اساس، وجود ویژگی حافظة بلندمدت در معادلات میانگین و واریانس قیمت نفت خام، مورد ارزیابی و مدل‌سازی قرار گرفت و نتایج مدل «ﻣﻴﺎﻧﮕﻴﻦ ﻣﺘﺤﺮک اﻧﺒﺎﺷﺘﻪ ﺟﺰﺋﻲ خودهمبسته»، مؤید وجود ویژگی حافظه بلندمدت در هر دو معادله‌ میانگین و واریانس سری مذکور است. اما آزمون‏های انجام شده، رفتاری غیرخطی و نمایی را در واریانس قیمت نفت خام تایید می‏نمایند. از این رو نتایج به ویژه براساس معیارهای اطلاعات و نیز معیار درصد میانگین مطلق خطا حاکی از انتخاب مدل‌ ترکیبی از الگوی ﻣﻴﺎﻧﮕﻴﻦ ﻣﺘﺤﺮک اﻧﺒﺎﺷﺘﻪ ﺟﺰﺋﻲ ﺧﻮدهمبسته و الگوی واریانس ناهمسانی شرطی نمایی یعنی مدل (1,1)EGARCH - (3,09/0,4) ARFIMA، به‌عنوان بهترین مدل جهت مدل‌سازی و پیش‌بینی نوسانات قیمت نفت خام اوپک است و عدم توجه به رفتار غیرخطی نمایی واریانس در حافظه بلندمدت قیمت نفت‌خام می‏تواند تحلیل‏گران و به ویژه تصمیم‏سازان اقتصادی را دچار خطای محاسباتی نموده و از سیاست بهینه منحرف سازد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

OPEC Crude Oil Daily Price Modeling by Extracting Nonlinear Exponential Behavior of Variance from Long-Term Memory

نویسندگان [English]

  • Moslem Ansarinasab 1
  • Shabnam Rahimi 2

1 Assistant Professor, Economic Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

2 Master of Science in Economic Systems Planning, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

چکیده [English]

Given the importance of oil prices, proper prediction of the OPEC Reference Basket can have an essential role in the immunization of economies in these countries against the effects of these fluctuations. This research is an effort to introduce an optimal model for modeling and predicting the fluctuations in OPEC crude oil prices. In this regard, we used data of daily oil prices between 2/1/1986 and 13/2/2017. According to this, the existence of long-term memory in the average equations and variance of crude oil prices were assessed and modeled and the result of the ARFIMA, confirms the existence of long-term memory in both the average equation and series variance. However, tests confirm non-linear and exponential behavior in crude oil prices. For this reason, results are specifically based on the information criteria and also MAPE and indicate the selection of a mixed model of partial augmented average movement and the model of conditional exponential Heteroscedasticity EGARCH (1,1) AFIRMA (4,0.09,3) as the best model for modeling and predicting the OPEC crude oil fluctuations in prices and lack of attention to exponential non-linear variance in the long term memory of crude oil prices can cause an error in the calculation of analysts and especially economic decision maker and deviation optimal policies.

کلیدواژه‌ها [English]

  • OPEC crude oil daily price
  • The Long term memory
  • Exponential non-linear variance behavior
  • Autoregressive fractionally integrated moving average
  • Exponential generalized autoregressive conditional heteroscedastic model
ابریشمی، حمید؛ مهرآرا، محسن و آریانا، یاسمین. (2007). ارزیابی عملکرد مدل‌های پیش‌‌بینی بی‌ثباتی قیمت نفت. مجله تحقیقات اقتصادی، 78؛ 21-1.
انصاری‌نسب، مسلم و منظری توکلی، زهرا. (1399). مدل‌سازی رفتار مصرف بنزین در ایران مبتنی بر حافظه بلند و تغییر رژیم. فصلنامه مطالعات اقتصاد انرژی، شماره ۱۶(۶۴)، صفحات 149-125.
جوانمرد، حبیب‌اله و فقیدیان، فاطمه. (1394). مقایسه عملکرد مدل‌های پیش‌بینی خاکستری با هدف پیش‌بینی قیمت نفت خام. تحقیق در عملیات در کاربردهای آن، شماره (4)47، صفحات 97-83.
حاجی‌کرم، الهام و دارابی، رویا. (1396). پیش‌بینی قیمت روزانه نفت خام برنت با ترکیب روش‌های آنالیز مؤلفه‌های اصلی و رگرسیون بردار پشتیبان. پژوهشنامه اقتصاد انرژی ایران، شماره (25)60، صفحات 41-7.
رحمان، فرنوش؛ نباتی، پریسا و عزیزی، معصومه. (1395). شبیه‌سازی و پیش‌بینی قیمت نفت اوپک با استفاده از معادلات دیفرانسیل تصادفی. پژوهش‏‏های نوین در ریاضی، شماره (2)7، صفحات 29-21.
شهبازی، کیومرث؛ رضایی، ابراهیم و صالحی، یاور. (1392). تأثیر شوک‌های قیمت نفت بر بازدهی سهام در بورس اوراق بهادار تهران: رهیافت SVAR‏. فصلنامة مطالعات انرژی، شماره 25، صفحات 112-89.
عرفانی، علیرضا. (1388). پیش‌بینی شاخص کل، بورس اوراق بهادار تهران با مدل ARFIMA. تحقیقات اقتصادی دانشگاه تهران، شماره 86، 180-163.
کمیجانی، اکبر و نادری، اسماعیل. (1391). مقایسه قابلیت‌های مدل‌های مبتنی بر حافظه بلندمدت و مدل‌های شبکه عصبی پویا در پیش‌بینی بازدهی بورس اوراق بهادار تهران. دانش مالی تحلیل اوراق بهادار، شماره 15، صفحات 130-115.
لاری سمنانی، بهروز و خلیلی، سیمین. (1397). تخمین قیمت نفت خام اوپک با استفاده از روش‌های درخت دوتایی، سری زمانی و شبکه‌های عصبی مصنوعی. مهندسی منابع معدنی، شماره (3)3، صفحات 41-31.
محمدی و دیگران. (1389). بررسی روند حافظه بلندمدت در بازارهای جهانی نفت، فصلنامه تحقیقات مدل‌سازی اقتصادی، شماره 1، صفحات 48-29.
محمدی، تیمور و طالبلو، رضا. (1389). پویایی‌های تورم و رابطه تورم و عدم اطمینان اسمی با استفاده از الگوی ARFIMA-GARCH . پژوهشنامه اقتصادی، شماره 36، صفحات 170-137.
محمدی، شاپور و چیت‌سازیان، هستی. (زمستان 1390). بررسی حافظه بلندمدت بورس اوراق بهادار تهران، نشریه تحقیقات اقتصادی دانشگاه تهران، شماره 97، صفحات 221-202.
مهرآرا، محسن؛ بهرادمهر، نفیسه؛ احراری، مهدی و محقق، محسن. (1389). پیش‌بینی بی‌ثباتی قیمت نفت با استفاده از شبکه عصبی GMDH. فصلنامه‌ مطالعات انرژی، شماره 25، صفحات 89-112.
همتی، عبدالناصر. (1384). اقتصاد نفت، چاپ اول، انتشارات سروش، تهران.
Alvarez-Ramirez, J. and Alvarez, J. and Rodriguez, E (2008). Short-term predictability of crude oil markets: a detrended fluctuation analysis approach. Energy Economics, Vol. 30(5), pp. 2645-2656.
Alvarez-Ramirez, J. and Cisneros, M. and Ibarra-Valdez, C. and Soriano, A. (2002). Multifractal Hurst analysis of crude oil prices. Physica A: Statistical Mechanics and its Applications, Vol. 313(3-4), pp. 651-670.
Baillie, R. and Chung, C. and Tieslau, M. (1996). Analyzing inflation by the fractionally integrated ARFIMA-GARCH model. Journal of Applied Econometrics, Vol. 11, pp. 23-40.
Barsky, R. B. and Kilian, L. (2001). Do we really know that oil caused the great stagflation? A monetary alternative. NBER Macroeconomics annual, Vol. 16, pp. 137-183.
Bernanke, B. S. and Gertler, M. and Watson, M. and Sims, C. A. and Friedman, B. M. (1997). Systematic monetary policy and the effects of oil price shocks. Brookings papers on economic activity, Vol. 1997(1), pp. 91-157.
Bhardwaj, G. and Swanson, N. R. (2006). An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series. Journal of Econometrics, Vol. 131(1-2), pp. 539-578.
Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroscedasticity. Journal of Econometric, Vol. 31(3), pp. 307-327.
Bristone, M., Prasad, R., & Abubakar, A. A. (2020). CPPCNDL: Crude oil price prediction using complex network and deep learning algorithms. Petroleum, 6(4), 353-361.
Chen, Y. and Zou, Y. and Zhou, Y. and Zhang, C. (2016). Multi-step-ahead crude oil price forecasting based on grey wave forecasting method. Procedia Computer Science, Vol. 91, pp. 1050-1056.
Cheung, Y. W. and Diebold, F. X. (1994). On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean. Journal of econometrics, Vol. 62(2), pp. 301-316.
Choi, K. and Zivot, E. (2007). Long memory and structural changes in the forward discount: An empirical investigation. Journal of International Money and Finance, Vol. 26(3), pp. 342-363.
Diebold, F. X. and Inoue, A. (2001). Long memory and regime switching. Journal of econometrics, Vol. 105(1), pp. 131-159.
Diebold, F. X. and Rudebusch, G. D. (1989). Long memory and persistence in aggregate output. Journal of monetary economics, Vol. 24(2), pp. 189-209.
Dittmann, I. and Granger, C. W. (2002). Properties of nonlinear transformations of fractionally integrated processes. Journal of Econometrics, Vol. 110(2), pp. 113-133.
Doornik, J. A. and Ooms, M. (2003). Computational aspects of maximum likelihood estimation of autoregressive fractionally integrated moving average models. Computational Statistics and Data Analysis, Vol. 42(3), pp.333-348.
Dowd, K. (2003). An introduction to market risk measurement. John Wiley and Sons.
Elder, J. and Serletis, A. (2008). Long memory in energy futures prices. Review of Financial Economics, Vol. 17(2), pp. 146-155.
Engle, R. F. and Smith, A. D. (1999). Stochastic permanent breaks. Review of Economics and statistics, Vol. 81(4), pp. 553-574.
Erbil, M. N. (2011). Is fiscal policy procyclical in developing oil-producing countries?. International Monetary Fund, (No. 11-171).
Finn, M. G. (2000). Perfect competition and the effects of energy price increases on economic activity. Journal of Money, Credit and banking, Vol (32), 400-416.
Geweke, J. and Porter‐Hudak, S. (1983). The estimation and application of long memory time series models. Journal of time series analysis, Vol. 4(4), pp. 221-238.
Granger, C. W. and Joyeux, R. (1980). An introduction to long‐memory time series models and fractional differencing. Journal of time series analysis, Vol. 1(1), pp. 15-29.
Gupta, N. and Nigam, S. (2020). Crude Oil Price Prediction using Artificial Neural Network. Procedia Computer Science, Vol. 170, pp. 642-647.
Hamilton, J. D. (1994). Time series analysis, Princeton. NJ: Princeton university press, Vol. 2, pp. 690-696.
Hassler, U. and Wolters, J. (1995). Long memory in inflation rates: International evidence. Journal of Business and Economic Statistics, Vol. 13(1), pp. 37-45.
Herrera, A. M. Hu, L. and Pastor, D. (2018). Forecasting crude oil price volatility. International Journal of Forecasting, Vol. 34(4), pp. 622-635.
Hosking, J. R. (1981). Fractional differencing. Biometrika, Vol. 68(1), pp. 165-176.
Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Trans, Amer, Soc, Civil Eng., Vol. 116, pp. 770-799.
Hyung, N., Franses, P. H., & Penm, J. (2006). Structural breaks and long memory in US inflation rates: Do they matter for forecasting? Research in International Business and Finance, 20(1), 95-110.
Kim, I. M. and Loungani, P. (1992). The role of energy in real business cycle models. Journal of Monetary Economics, Vol. 29(2), pp. 173-189.
Kristjanpoller, W. and Minutolo, M. C. (2016). Forecasting volatility of oil price using an artificial neural network-GARCH model. Expert Systems with Applications, Vol. 65, pp. 233-241.
Lo, A. W. (1989). Long-term memory in stock market prices. National Bureau of Economic Research, (No. w2984)
Mandelbrot, B. B. and Wallis, J. R. (1969), Computer experiments with fractional Gaussian noises: Part 1, averages and variances. Water resources research, Vol. 5(1), pp. 228-241.
Obstfeld, M. and Rogoff, K. (1995). Exchange rate dynamics redux. Journal of political economy, Vol. 103(3), pp. 624-660.
Robinson, P. M. (1995). Log-periodogram regression of time series with long range dependence. The annals of Statistics, pp. 1048-1072.
Rotemberg, J. J. and Woodford, M. (1996). Imperfect competition and the effects of energy price increases on economic activity. National Bureau of Economic Research, (No. w5634).
Sowell, F. (1992). Maximum likelihood estimation of stationary univariate fractionally integrated time series models. Journal of econometrics, Vol. 53(1-3), pp. 165-188.
Tsay, W. J. (2008). Analysing inflation by the ARFIMA model with Markov-switching fractional differencing parameter. The Institute of Economics.
Vo, M. (2011). Oil and stock market volatility: A multivariate stochastic volatility perspective. Energy Economics, Vol. 33(5), pp. 956-965.
Wang, Y. Wu, C. and Wei, Y. (2011). Can GARCH-class models capture long memory in WTI crude oil markets?. Economic Modelling, Vol. 28(3), pp. 921-927.
Wei, Y. Wang, Y. and Huang, D. (2010). Forecasting crude oil market volatility: Further evidence using GARCH-class models. Energy Economics, Vol. 32(6), pp. 1477-1484.
Xiu, J. and Jin, Y. (2007). Empirical study of ARFIMA model based on fractional differencing. Physica A: Statistical Mechanics and its Applications, Vol. 377(1), pp. 138-154