نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اقتصاد نفت و گاز، دانشگاه علامه طباطبائی، تهران، ایران

2 دانشیار، گروه اقتصاد نظری، دانشگاه علامه طباطبائی، تهران، ایران،

3 دانشیار، گروه اقتصاد انرژی، دانشگاه علامه طباطبائی، تهران، ایران

4 دانشیار، گروه آمار، دانشگاه آزاد اسلامی واحد تهران شمال، ایران

چکیده

ویژگی‌های نفت خام و عوامل مؤثر بر قیمت این حامل انرژی باعث شده تا پیش‌بینی قیمت آن همواره مورد توجه محققان، فعالان بازار نفت، دولت‌ها و سیاست‌گذاران قرار گیرد. از آنجایی که قیمت نفت خام تحت تأثیر عوامل زیادی است بنابراین باید در این راه مطالعات مداوم صورت گرفته تا برآوردهای انجام شده با گذشت زمان، نتایج دقیق‌تر و از قابلیت اعتماد بالاتری برخوردار شود. در این مقاله برای پیش‌بینی قیمت نفت خام از ترکیب مدل خاکستری مرتبه اول و آریما استفاده شده و مدل ترکیبی خاکستری - آریما پیشنهاد شده است. برای بررسی این تکنیک از داده‌های قیمت نفت خام برنت در بازه‌های زمانی فصلی، ماهیانه و هفتگی استفاده شده است. در پیش‌بینی فصلی داده‌های سه ماه اول سال 2015 تا سه ماهه دوم سال 2021، در پیش‌بینی ماهیانه داده‌های مارس 2020 تا دسامبر 2020 و در پیش‌بینی هفتگی داده‌های هفته دوازدهم 2020 تا هفته شانزدهم 2021 مورد استفاده قرار گرفته است. نتایج نشان داد میانگین قدر مطلق درصد خطا و جذر میانگین مربع خطا در مدل ترکیبی، همواره کمتر از مدل‌های منفرد یا تک تئوری خاکستری و آریما است. همچنین، مدل ترکیبی توانایی بالاتری جهت توضیح و پوشش نوسانات قیمت در بازه‌های مختلف زمانی را داشته و قابل اطمینان‌تر از مدل‌های منفرد است. لذا می‌توان از مدل ترکیبی به جای مدل‌های منفرد و تک تئوری برای پیش‌بینی دقیق‌تر استفاده کرد.

کلیدواژه‌ها

عنوان مقاله [English]

Brent Crude Oil Price Forecasting by Combining Grey Theory and Econometrics Techniques

نویسندگان [English]

  • Hossein Yadegari 1
  • Teymour Mohamadi 2
  • Hamid Amadeh 3
  • abdorrasoul ghasemi, 3
  • hamidreza mostafaee 4

1 Ph.D. Student in Oil and Gas Economics, Allameh Tabataba’i University, Tehran, Iran

2 Associate Professor of Economics, Allameh Tabataba’i University, Tehran, Irany

3 Associate Professor, Department of Energy Economics, Allameh Tabataba’i University, Tehran, Iran

4 Associate Professor, Department of Statistics, North Tehran Branch, Islamic Azad University, Tehran, Iran

چکیده [English]

The characteristics of crude oil and the factors affecting the price of this energy carrier have made its price forecast always considered by researchers, oil market participants, governments, and policymakers. Because the price of crude oil is affected by many factors, ongoing studies should be done to make more accurate and reliable estimates over time. In this paper, a combination of GM (1,1) and ARIMA models and a hybrid model (GM-ARIMA) for crude oil price forecasting is proposed. The Brent crude oil price data for seasonal (2015Q1-2021Q2), monthly(2020m3-2020m12), and weekly(w12-2020: w16-2021) periods were used to examine this method. The results show that based on the evaluation criteria of mean absolute error percentage (MAPE) and square mean square error (RMSE), the evaluation criteria of MAPE and RMSE in the combined GM-ARIMA model are always lower than the GM and ARIMA models alone. Therefore, the GM-ARIMA hybrid model will be able to predict more accurately than the GM and ARIMA models. Therefore, for more accurate prediction, the GM-ARIMA hybrid model can be used instead of single models.

کلیدواژه‌ها [English]

  • Crude oil price
  • Crude oil price forecast
  • GM grey model
  • ARIMA model
  • GM-ARIMA hybrid model
امامی میبدی، علی (1385). تحلیل عوامل مؤثر بر قیمت نفت خام. فصلنامه پژوهش‌های اقتصادی ایران، شماره 28، صفحات 111-126.
شاکری، عباس و محمدی، تیمور و جعفری، محمد(1398). تأثیر نوسانات مالی جهانی بر بازار نفت با تأکید بر بحران مالی 2008. فصلنامه علمی پژوهشنامه اقتصادی، شماره 74، صفحات 38-1.
رحمانی، مهرداد و فریدزاد، علی (1398). نوسانات قیمت نفت طی چهل سال: چرا قیمت نفت همچنان ممکن است ما را متعجب کند؟. فصلنامه روند، شماره‌های 83 و 84، صفحات 168-131.
جوانمرد، حبیب‌الله و فقیدیان، سیده فاطمه (1393). پیش‌ببنی ﻗﯿﻤﺖ ﻧﻔﺖ ﺧﺎم اوﭘﮏ ﺑﺎ به‌کارگیری ﻣﺪل ﭘﯿﺶ‌ﺑﯿﻨﯽ ﺧﺎﮐﺴﺘﺮی. مجله فصلنامه مدلسازی اقتصادی، شماره 3، صفحات 114-91.
زمانی، مهرزاد (1384). مدل‌سازی و پیش‌بینی قیمت نفت خام WTI. فصلنامه مطالعات اقتصاد انرژی، شماره 4، صفحات 38-22.
شاه‌نظری، محمدرضا و همکاران (1398). توسعه و مقایسه روش‌های مبتنی بر روش‌گری و فرکتال در پیش‌بینی قیمت گاز طبیعی.  فصلنامه مطالعات اقتصاد انرژی، شماره 62، صفحات 18-1.
بهرادمهر، نفیسه (1387). پیش‌بینی قیمت نفت خام با استفاده از هموارسازی موجک و شبکه عصبی مصنوعی. فصلنامه مطالعات اقتصاد انرژی، شماره 18، صفحات 98-81 .
پورکاظمی، محمدحسین و اسدی، محمدباقر (1388). پیش‌بینی پویای قیمت نفتخام با استفاده از شبکه‌های عصبی مصنوعی و با به‌کارگیری ذخیره‌سازی‌های نفتی کشورهای OECD. مجله تحقیقات اقتصادی، شماره 88، صفحات 46-25.
Liu, S. F., Yang, Y. and Wu, L. (2014c). Grey System Theory and Its Application. 7th ed., Science Press, Beijing.
Haken, H. (2011). Book reviews: grey information: theory and practical applications. GreySystems: Theory and Application, Vol. 1 No. 1, pp. 105-106.
Andrew,A. (2011).Why the world is grey. Grey Systems:Theory and Application, Vol. 1 No. 2, pp. 112-116.
Hipel, K.W. (2011).Book reviews: Grey Systems: theory and applications. Grey Systems: Theory and Application, Vol. 1 No. 3, pp. 274-275.
Vallee, R. (2008).Book reviews: grey information: theory and practical applications. Kybernetes,Vol. 37 No. 1, p. 89.
Lin ,Aimei,(2009). Prediction of International Crude Oil Futures Price Based on GM(1,1), IEEE International Conference on Grey Systems and Intelligent Services, pp. 692-696.
Hong-Xia Chen, Guang-Jun Jiang and Qing-Chao Zhang (2018). GM(1,1) Modeling of Failure Rate Prediction for Preventive Maintenance. International Journal of Information and Management ,Sciences 29, DOI:10.6186/IJIMS.201812, Vol. 29(4), pp. 365-379.
Sifeng Liu Jeffrey Forrest Yingjie Yang, (2012).A brief introduction to grey systems theory. Grey Systems: Theory and Application, Vol. 2 Iss 2 pp. 89-104.
Javanmardi, Ehsan & Liu, Sifeng(2019). Exploring Grey Systems Theory-Based Methods and Applications in Analyzing Socio-Economic Systems, Institute for Grey Systems Studies, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
Li, Rongrong & Li, Shuyu & Yang, Xue(2018). Forecasting China’s Coal Power Installed Capacity:A Comparison of MGM, ARIMA, GM-ARIMA,and NMGM Models, School of Economic and Management, China University of Petroleum (East China).
Lu, Meng(2015). Grey system: theory, methods, applications and challenges. Leverhulme Trust Workshop on Grey Systems and Applications.
Huntington Hillard G (1994) Oil Price Forecasting in the 1980s: What Went Wrong?. The Energy Journal, Vol. 15(2), pp. 1-22.
Hou Aijun, Suardi Sandy (2012). A nonparametric GARCH model of crude oil price return volatility. Energy Economics, Vol.34(2), pp. 618-626.
Lanza Alessandro, Manera Matteo, Giovannini Massimo(2005).Modeling and forecasting cointegrated relationships among heavy oil and product prices. Energy Economics, Vol. 27(6), pp. 831-848.
He Angela W. W., Kwok Jerry T. K., Wan Alan T. K. (2010) An empirical model of daily highs and lows of West Texas Intermediate crude oil prices. Energy Economics, Vol. 32(6) , pp. 1499-1506.
Panopoulou Ekaterini, Pantelidis Theologos (2015). Speculative behaviour and oil price predictability. Economic Modelling, Vol.47, pp.128-136.
Murat Atilim, Tokat Ekin (2009). Forecasting oil price movements with crack spread futures. Energy Economics, Vol. 31(1) , pp. 85-90.
Yu Lean, Wang Shouyang, Lai Kin Keung (2008). Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm. Energy Economics, Vol. 30(5) , pp. 2623-2635.
He Kaijian, Yu Lean, Lai Kin Keung (2012). Crude oil price analysis and forecasting using wavelet decomposed ensemble model. Energy, Vol.46(1): 564-574.
Li Ziran, Sun Jiajing, Wang Shouyang (2013).An information diffusion-based model of oil futures price. Energy Economics, Vol. 36, pp. 518-525.
Yu Lean, Dai Wei, Tang Ling (2016). A novel decomposition ensemble model with extended extreme learning machine for crude oil price forecasting. Engineering Applications of Artificial Intelligence, Vol. 47, pp. 110-121.
Behradmehr, N. (1387). Oil price forecasting with using ANNs and wavelet smoothing. Journal of studies energy economic, Vol. 18: 81-98.
Hsu, C. C., & Chen, C. Y. (2003). A modified Grey Forecasting Model for Long‐Term Prediction. Journal of the Chinese Institute of Engineers, Vol. 26(3), pp. 301-308.
Zhou, W., & He, J. M. (2013). Generalized GM (1, 1) model and its application in forecasting of fuel production. Applied Mathematical Modelling, Vol. 37(9) , pp. 6234-6243.
Xiong, H. Y., Chen, X. Y., Wang, W. B, (2010). Prediction of China's energy consumption based on combination model. Science Technology and Engineering, Vol. 42, pp. 67–70.
Zhou, W., & He, J. M. (2013). Generalized GM (1, 1) model and its application in forecasting of fuel production. Applied Mathematical Modelling, Vol. 37(9) , pp. 6234-6243.
Kayacan, E., Kaynak, O. & Ulutas, B. (2010). Grey system theory- based models in time series prediction. Expert Systems with Application, Vol.37(2) , pp. 1784-1789
Dehdar, F., Yap, S., Naghavi, M. S., & Dehdar, M. M. (2017). Charting the Future Global Status of Oil and Natural Gas using Grey Forecasting. Institutions and Economies. Vol.8(3), pp.105-125.
Camelia, Delcea (2015). Grey systems theory in economics – a historical applications review. Economic Informatics and Cybernetics Department,Bucharest University of Economic Studies, Bucharest, Romania DOI: 10.1108/GS-05-2015-0018.
An, Haizhong & Jia, Xiaoliang (2015). How do correlations of crude oil prices co-move? A greycorrelation-based wavelet perspective. Energy Economics, Vol.49, pp.588–598.
Julong, Deng(1989). Introduction to Grey System Theory, The Journal of Grey System Vol 1, pp.1-24.
Zou, Yingchao & Chen, Yanhui(2016). Multi-step-ahead Crude Oil Price Forecasting based on Grey Wave Forecasting Method, Information Technology and Quantitative Management Vol 91, pp.1051-1056
Liu, Sifeng &Yang, Yingjie(2015). New progress of Grey System Theory in the new millennium, DOI 10.1108/GS-09-2015-0054
Wang, Qiang & Song, Xiaoxing & Li, Rongrong (2018). A novel hybridization of nonlinear grey model and linear ARIMA residual correction for forecasting U.S. shale oil production, www.elsevier.com/locate/energy, Energy, Vol.165, pp.1320-1331.
Wang, Qiang & Jiang, Feng(2019). Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States. Energy Vol. 178, pp. 781-803. www.elsevier.com/ locate/energy.
Li C, Qin J, Li J, Hou Q. (2016. The accident early warning system for iron and steel enterprises based on combination weighting and Grey Prediction Model GM (1, 1). Saf Sci , Vol. 89, pp. 19-27.
Yuan C, Liu S, Fang Z.(2016). Comparison of China’s primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM (1,1) model. Energy, Vol. 100, pp. 384-390,  https://doi.org/10.1016/j.energy.2016.02.001.
Li S, Li R.(2017). Comparison of forecasting energy consumption in Shandong, China Using the ARIMA model, GM model, and ARIMA-GM model. Sustainability, Vol. 9, doi:10.3390/su9071181.
Sen P, Roy M, Pal P. (2016). Application of ARIMA for forecasting energy consumption and GHG emission: a case study of an Indian pig iron manufacturing organization.Energy, Vol. 116, pp. 1031-1038.
Oliveira EMD, Oliveira FLC(2018). Forecasting mid-long term electric energy consumptionthrough bagging ARIMA and exponential smoothing methods. Energy ,Vol. 144 , pp. 776-788.
Wang Q, Li S, Li R(2018).China's dependency on foreign oil will exceed 80% by 2030: Developing a novel NMGM-ARIMA to forecast China's foreign oil dependence from two dimensions. Energy, Vol. 163, pp. 151-167.
[1]          
 
استناد به این مقاله: یادگاری، حسین، محمدی، تیمور، آماده، حمید، قاسمی، عبدالرسول، مصطفایی، حمیدرضا. (1399). پیش‌بینی قیمت نفت خام برنت با ترکیب تکنیک‌های مبتنی بر تئوری خاکستری و اقتصادسنجی، پژوهشنامه اقتصاد انرژی ایران، 36 (9)، 149-171.
 Iranian Energy Economics is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.