• مطالعات اقتصادی مرتبط با حاملهای انرژی (فسیلی، تجدیدپذیر و برق)
Zahra Farshadfar; Sajad Piri
Abstract
High fluctuations in the price of crude oil, as the main source of energy and an important raw material of the global chemical industry, has doubled the importance of accurate estimation and forecasting of its price trend in recent years. The purpose of this applied research, is to increase the ability ...
Read More
High fluctuations in the price of crude oil, as the main source of energy and an important raw material of the global chemical industry, has doubled the importance of accurate estimation and forecasting of its price trend in recent years. The purpose of this applied research, is to increase the ability to predict crude oil prices using non-linear patterns by artificial intelligence. For this purpose, four artificial intelligence networks MLP, RNN, LSTM 3366and GRU have been used and their capabilities compared to each other and the benchmark model, besides their prediction accuracy have been evaluated using the mean squared error method. The studied sample is North Sea Brent crude oil data from Aug 1st 2007 to May 31st 2024 on a daily, monthly and yearly basis.
The results of the research indicate that the network architecture in these models have several advantages in extracting information from the data in order to make more accurate predictions, and the time to obtain future prices is shorter and less error-prone. Also, among the selected non-linear models, GRU has more accurate predictions with less error in different frequencies and in a shorter time.
The results of the research indicate that the network architecture in these models has several advantages in extracting information from the data in order to make more accurate predictions, and the time to obtain future prices is shorter and less error-prone.
• سیاستگذاریهای اقتصادی و مالی در حوزههای فوقالذکر در سطوح ملی، منطقهای و جهانی
reza taleblou; parisa Mohajeri
Abstract
This study investigates the application of recurrent neural network (RNN) models—specifically RNN, long short-term memory (LSTM), and gated recurrent unit (GRU)—in predicting the stock indices of the Iranian energy industry. Using daily time series data from May 1, 2020, to May 1, 2024, the ...
Read More
This study investigates the application of recurrent neural network (RNN) models—specifically RNN, long short-term memory (LSTM), and gated recurrent unit (GRU)—in predicting the stock indices of the Iranian energy industry. Using daily time series data from May 1, 2020, to May 1, 2024, the dataset was divided into a training period (80%) and a testing period (20%). In the first step, the optimal architectures of each model (estimating hyper-parameters) were determined for prediction horizons of 1, 2, 5 (one week), and 20 trading days (one month). Subsequently, prediction errors of the three machine learning models were compared with the linear econometric model (ARIMA) across various forecast horizons. The findings in two areas of cross validations of machine learning models as well as predication error reveal the following insights: First, as the forecast horizon increases, the batch size of optimal prediction decreases for all three machine learning models, and the larger the input training sample size leads to the smaller batch size. Second, in short-term forecast horizons (1, 2, and 5 trading days), machine learning models—particularly LSTM—demonstrate lower prediction errors than ARIMA, while in the 20-trading-day (1-month) forecast horizon, ARIMA's predictive accuracy approaches to the nonlinear machine learning models. Third, forecast accuracy decreases as the horizon lengthens, with accuracy dropping from approximately 98.5% (for a 1-day horizon) to 92.5% (for a 20-day horizon). Finally, selecting the appropriate forecasting method for the stock market indices of energy industries depends on the forecast horizon and data characteristics.